60 Years of AC Electrics

Standard

60 years ago on the 27th Nov
ember 1959, Britain’s pioneer 25Kv A.C. electric locomotive was officially handed over to British Railways. Then numbered E3001, it 
was to be the first of a long series of successful 
locomotive designs for the West Coast Main
Line (WCML). Within this series there have
 come to be seven basic designs, and a number of sub-divisions of the classes ALl to AL7. Although the last of these was never actually
 introduced under the old title of AL7, but
 designated Class 87 with the new “TOPS”
 locomotive codes, the family likeness remains
 very strong despite the detail alterations to the appearance of the latest type.

AEI_4Under the Modernisation Plan proposals it was decided that two types of locomotive – ‘A’ and ‘B’ – would be required. These were for mixed traffic, and freight service, respectively, with an equal number of both types needed, with their different haulage characteristics. This was not how things turned out, with the slower progress in the adoption of continuous brakes on freight trains, only five of the first 100 locomotives were type ‘B’, freight types. Metropolitan Vickers and BTH (as AEI), and English Electric were the builders of this entirely new breed of motive power, with mechanical portions of some constructed at BR’s Doncaster Works, and the North British Loco Co., in Glasgow.

86433 and 87034 at Carlisle 1980sIn 30 years, the UK railway industry, together with British Rail’s workshops had provided innovation, specialist technical, design and manufacturing skills that delivered the high-speed rail network, with the East and West Coast Main Line routes as their backbone.

91005 passing Carstairs 1995“Electra” was in effect the final gestation of the first, second and third-generation a.c. locomotive designs to be operated by British Rail, and whilst the ultimate high-speed passenger train, the APT never materialised, it did give rise to the “Pendolino” tilting trains.

Click on the image below for a longer read ….

60 Year cover image

Useful Links

Wikipedia Pages:

Class 80 Class 81 Class 82
Class 83 Class 84 Class 85
Class 86 Class 87 Class 89
Class 90 Class 91  

General Information

The AC Electric Locomotive Group English Electric Co. – Grace’s Guide
Class 90 Electric Loco Group Metro-Cammell Ltd
Associated Electrical Industries (AEI) – Grace’s Guide British Rail Engineering Ltd – Science Museum

-oOo-

 

 

Britannia Rules The Rails

Standard

Sometimes, it just has to be done.  Back in 1951, British Railways unveiled its brand new steam locomotive, at the same time as the Festival of Britain was showcasing the country’s capabilities, and the author also appeared!  This class of steam locomotive broke many of the traditional design and building rules of the old ‘Big Four’ companies, and these were especially noticeable in its appearance.

Light_engine_(3319833486)

The now preserved 70013 Oliver Cromwell heading light engine backwards to Cardiff to get coal and water.                       Photo: Ben Salter CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=22446886

Gone were the days of hiding the workings away from public gaze – and the dificulties faced by crew and maintenance fitters in day to day oiling and repairs.  These were intended to be the most efficient, modernising locomotives, and brught together the best aspects of railway engineering that the UK could muster.  At least that was the plan.

“The object of the designer has been to make these standard engines easy to build, easy to maintain, and easy to repair. Many of the parts and fittings are interchangeable between the six types being built in 1951 so that spares tall be kept to a minimum.”

As a classic design, the BR Standard Britannia pacific was the pinnacle of steam locomotive development in Britain. At least, that argument could be held true for the mixed traffic design. Clearly, in other more specialist categories – express passenger, freight, etc. – the argument may be much more tenuous. Quite apart from statements from the Railway Executive in 1951, the new standard range of locomotives for British Railways embodied many of the most up to date characteristics of 20th century British locomotive design. In truth, it also sought to include some rather more international features, especially some aspects that were derived from Continental European and North American practices.

Click on the image below to read on:

Booklet cover

Read on ….

Some useful & interesting links

BRSTD - web page

http://www.iconsofsteam.com/locos/britannia/story/

http://www.royalscot.org.uk – preserved locomotive 70000 “Britannia”

 

 

 

-oOo-

 

 

The Digital Railway – Still On Time?

Standard

Back in the 1990s, Railtrack, and subsequently Network Rail, was charged with implementing the Europe wide signalling and train control system – ERTMS. This included the emerging ETCS (Electronic Train Control System), which was intended to remove the use of optical, lineside signals completely, and use track to train communications through a system of track mounted transmitters/receivers.

But is there more to this digital railway business than simply providing a better train control, management and signalling system?

The UK is still years behind our European neighbours in implementing the ERTMS platforms – although to be fair Railtrack/Network Rail have rolled out the halfway house of Train Protection & Warning System (TPWS), and today the core routes are at the entry level for ETCS. Today’s push for the “Digital Railway” has a lot of chatter, and media speak around improving performance and capacity for economic and commercial growth, but on the technology front, there seems to be some way to go – still.

Back in the late 1990s, the TPWS platform was supposed to have a 15-year lifespan, so is now beyond its final years of scheduled life, alongside the upgraded conventional signalling systems. By 2001 we were implementing systems that conformed to ETCS Level 3, with the Alstom TCS (Train Control System), for the upgrade of the West Coast Main Line (WCML).

There were plans to fit ETCS cab equipment in new stock, but following revisions to Control Period 5 with the ‘Hendy Review’ funding was cut, and the delays in deploying the system could be said to be pushing the UK further behind.

In 2015, the Rail Delivery Group published its 3rd annual “Long Term Passenger Rolling Stock Strategy”, where it stated that:

“During CP5 and CP6, the European Train Control System (ETCS) will be fitted to many fleets
 in preparation for the operation of the European Rail Traffic Management System (ERTMS).”

2015 Rolling Stock StrategyScreenshot 2019-11-21 at 10.51.37

Originally, it was considered that the modular nature of ETCS would be attractive to introduce the technology at Level 1 on secondary routes, interfacing to the existing IECC (Integrated Electronic Control Centres providing automated route setting, amongst other functions), and SSI (Solid State Interlocking) technology. This ability to upgrade in a phased manner was and is important to the UK and other rail networks, with open communications interfaces allowing integrated working across Europe.

But has the signalling and train control system finally been implemented to the optimistic plans of 2001, when the WCML upgrade was completed?

Perhaps not, since back in 2010, the Department for Transport (DfT)was working with outside advisers to try and determine the risks and benefits of adopting – at a future date – possible adoption of the European Railway Traffic Management System (ERTMS/ETCS) Level 3. This report came to the obvious conclusion that it was necessary, desirable, cost effective and efficient – but that was almost a decade ago.

Towards the end of 2016, and although the Rail Delivery Group, and Network Rail’s initiative for a cross-industry Digital Railway programme was progressing, the Transport Committee in its 7th Report (Rail technology: signalling and traffic management) showed that there was still much discussion on the topic:

Their conclusion:

We conclude that improvements to signalling and traffic management technology are needed to deliver a world-class rail network in the UK. In principle we support the idea that the deployment of the European Train Control System (ETCS), Traffic Management software and Driver Advisory systems should be accelerated but this should be subject to careful consideration of the Digital Railway business case, clarity about funding, and a clear understanding of how this programme would affect existing plans for work on enhancements and renewals. In particular, Network Rail’s Digital Railway business case should include a full cost/benefit analysis of all potential systems for a particular route, and consult upon it, before finalising its Digital Railway strategy. 

So, the UK’s rail network, its technology and industry does still appear to have some way to go – despite the fitting of ETCS Level 3 technology to the latest rolling stock, and plans for trials on various routes.

That said, the limited trials using Class 155 multiple units and departmental Class 37 diesels in Wales, on the Cambrian line paved the way for the application of ETCS level 2 on the Thameslink route, with GTR Class 700 trains. The trains began operating in August 2016, with a train running from St Pancras to Blackfriars, and having the ATO software overlay installed to allow automated operations. According to some reports this meant the driver would be responsible for supervising operations via instructions and guidance from in-cab screens, as opposed to controlling the train in a more conventional manner.

Currently, under the Control Period (CP) plans for the East Coast and ex-GWR main lines, ETCS will be introduced in phases – but it will take between 2024 and 2049 to complete the work. This is what is on the current plans:

  • CP6 (by 2024) – KX to Crews Hill and Hatfield
  • CP7 (by 2029) – Sandy to Peterborough; Grantham to Retford and Plymouth to Totnes
  • CP8 (by 2034) – Peterborough to Grantham; York (North) to Northallerton; Ferryhill to Alnmouth, and Paddington to Slough and Heathrow; Totnes to Exeter
  • CP9 (by 2039) – Retford to York (North); Northallerton to Ferryhill; Alnmouth to Berwick, along with Wootton Bassett to Exeter via Bristol, and Pewsey to Cogload Junction
  • CP10 (by 2044) – Didcot area (Cholsey to Wantage Road); Didcot to Oxford and Honeybourne
  • CP11 (by 2049) – Reading area (Slough to Cholsey); Wantage Road to Wootton Bassett; Reading to Pewsey

But no work will be undertaken on the ECML for Control Periods 10 and 11 – well at least that’s the current position, I think.

Thameslink trains now operate with ETCS Level2, with ATO in the central section, which puts that route at the forefront of implementing ATO with ERTMS, operating the new Class 700 Siemens “Desiro City” multiple units. These were procured under a PFI arrangement from 2013, from a consortium of Cross London Trains Ltd, which included Siemens Project Ventures GmbH, Innisfree Ltd., and 3i Infrastructure Ltd., and the trains began operating in 2016.  They were either 8 or 12-car units, and were later supplemented with an order for another 25 6-car trains – the Class 717 units, that would be used on the Great Northern line. In the end these new trains replaced no fewer than 6 older designs, from the Class 319 to Class 466.

Currently the only other ETCS Level 2 equipped and – well almost operational – trains are the Class 345 9-car trains for the Crossrail line. These actually began running in June 2017, and used at the outer ends, on the Great Eastern and Great Western main lines, as ETCS implementation is completed. In the Crossrail case, the trains are based on Bombardier’s “Aventra” design, but, unlike Thameslink, they are equipped for 25kV a.c. operation only, with no 3rd rail contact shoe. The Crossrail trains also carry equipment that allow them to use the TPWS warning system devised as a ‘halfway house’ towards ETCS in the 1990s.

Back in 2018, the DfT produced an 8-page implementation plan/technical spec for interoperability – the Control, Command System (CCS), under the slogan “Moving Britain Ahead”. On Page 4 of that document it states that the “Class B System”, which is the old “Halfway House” platform of TPWS from the late 1990s is supported by an industry wide spec. It also states that migration to ETCS will be on a “business led” basis, and implies that the “Class B System” will continue to be used in the UK.

“This specification defines all the required functionality and performance in a way which does not constrain the market to any particular supplier.” 


When ETCS was being promoted in the late 1990s/early 2000s, and when it was to be rolled out on the West Coast Main Line, in a phased manner, there were still multiple suppliers of ETCS equipment – whether for Level 1, 2 or 3. Not sure that still holds, but certainly the technology has progressed – perhaps the primary objection to speeding up its rollout is the rolling stock problem, and retrofitting to the large fleet of older vehicles. It’s great that it has been implemented for Thameslink, and there are still plans to implement – but TPWS was only intended to have a 15 year lifespan in 1999.

Following a review in 1999 of Railtrack’s West Coast upgrade, the approach to implementing train control through an ETCS platform was not progressed in the original manner, and it was recommended a more piecemeal approach, as an overlay to existing systems was taken. That is one of the ways in which ETCS can be implemented, with no need for a ‘big bang’ approach, and all that that would involve both technically, operationally, and S&T and driver training.

So, you might say, the UK’s “Digital Railway” is getting there, to misquote an old British Rail advertising slogan – but it will be sometime yet, before that objective is realised. In truth, some of us may not even be here to see that…… ah well.

-oOo-

TPWS

TPWS Feature coverClick on the image opposite, which will take you to a short feature written in 2001 about the implementation of TPWS – the UK’s initial step towards a full ERTMS/ATP train control system.

 

 

More Useful Links:

 

 

 

British Rail – InterCity Catering

Standard

I have travelled on the West Coast Main Line in Britain for many years, from the days of steam, to the days of the Pendolino, and it seems to me all that the general public are fed is a diet of stories about the curly sandwich. This seemed especially true of the nationalised network.

Inter City Press Release Images March 1993 1The last time I made a journey by a main line service, all that seemed to be on offer was a vending machine, several varieties of crisp, bread rolls, burgers and a coffee from an automated dispensing device. Fast food seems to have taken a stranglehold on train travel in the 21st Century.

Well clearly that’s not much better than the impression that the nationalised system was offering nothing more than a dried up sandwich, and watery tea – or coffee.

Inter City Press Release Images March 1993Back in the later British Rail years, where InterCity was making a profit, the food offering could be quite impressive too. In fact, under BR’s Sectorisation – InterCity was set up in 1987, and made an operating profit of £57 million in its first year, £56 million in 1989, and £49 million in 1990. That despite a cut by the Government of 29% in the passenger grant for rail operations. (Yes, I know it covered other BR sectors, but it would have been impacted.)

In the Spring of 1993, under the custodianship of Chris Green, BR InterCity embarked on a marketing campaign, following a successful introduction in 1992 of what were described as “Express Diner light menus”. This resulted in a 20% increase in the demand for restaurant car meals, and in 1993 more innovation was introduced, including the “Great British Afternoon Tea”

The “Express Diner” menu had a wider choice of meals, including: Rack of Ribs with Barbecue Sauce, Cumberland Sausage and Mash, and Steak and Kidney Pudding alongside existing items such as Fish and Chips and Rib 
Steak. They also went on to include innovations as Chicken Tikka Masala, Beef Stew and Dumplings and Thai-style vegetables with rice
, Jacket Potatoes and even Pizza. (Obviously a novelty in the 1990s!) Oh, yes, and of course a selection of reasonably priced wines was available for lunch and dinner.

Now I’m not suggesting that they were all a great success – but considering the sector’s profitability as a nationalized enterprise, they were giving it a go. At the same time this was happening, of course the 1991 EU Directive about separating infrastructure from operations was being put in place, and the next few years became chaotic, and these innovations dried up.

Mark III Coach Interiors – 1980s

Mk III Coach interior

A nice spacious interior in the Mark III coaches from the late 1980s – in this case a First Class Open.

Mk IIIb 1st open Coach interior with telephone

Another generation of the Mark III design was – unsurprisingly the Mark IIIb, but in this example a First Open with an on board telephone. After your meal, why not make a phone call from the train – so long as you had cash or a phone card in 1986 you could.

Today’s fare is a staggering list of coffees – or at least, various ways of serving coffee – together wraps, bagels, burgers and ciabatta rolls, along with a range of wines, beers and spirits, and even porridge. But that’s in the on-board shop section, alongside the usual vending machines. The only way to get a meal served at a table is in first class though, and only on certain trains – and the menu, like our tastes may have changed – and now includes such as mushrooms in a pastry case with butternut squash.

Not something that was common 20 years ago – but then neither were the veggie and deli specials. Even first class travel on some trains does not mean you get a meal, it may be just wraps, sandwiches or rolls for lunch, or perhaps grilled salmon, beef and potato pie, or salad for an evening repast.

Train Innovations Too

But the on-board food and menu changes were not the only improvements to be planned for the early 90s, in BR days. The existing HST sets and coaches were goiung to be fitted with a range of facilities, many of which we take for granted today. This is what was planned in 1993 – 26 YEARS AGO! :-

  • Audio entertainment system with a selection of CD and FM radio channels available at seat.
  • Electronic seat reservation information on luggage racks and new information displays (including time and journey information using a satellite-based system).
  • Improved toilets with new vanity units and lighting.
  • Brighter entrances to provide a better, warmer welcome for customers.
  • Improved tables, seat access and luggage storage.

Inter City Press Release Images March 1993 3Changes to the internal layout of the coaches was intended to break the saloon into smaller areas, with the Senior Conductor’s office located in the centre of 
the train; near the buffet and accommodation for the disabled, for better customer accessibility.

Clearly some of these were incorporated into the Pendolino trains in later years – some 10 years after BR had planned to introduce them.

Interior of Virgin Voyager - Milepost 92 and half

Not long after the 1993 innovations, along came the likes of the Pendolino and Voyager fixed formation trains from Bombardier and other makers, and hey presto, the above seat reservation details appeared – and of course in-coach entertainment.

When all is said and done though, it has always been unfair to cast aspersions at the state of the on-board catering on British Rail, as undoubtedly, there are occasions when even 20 odd years later, there are no doubt examples of failures. It is not nationalised rail system that was the cause of these issues, but maybe it was us – our changing tastes in food and service.

Inter City Press Release Images March 1993 4

Maybe the initiatives were from BR’s InterCity Sector, but we just took a different path to get there. At least that sector was profitable – but then, maybe there is another story there too.

 

 

 

The whole idea behind this marketing campaign was to persuade travellers not to do this:

Inter City Press Release Images March 1993 2

-oOo-

Useful Links:

Intercity Rail in Britain a Landmark Paper-25-years-on/

 

Hong Kong Metro – 40 Years On

Standard

It was once described as the largest building project in Asia, and it carried its first fare paying passengers on 1 October 1979 when the 8.5km section of the Metro between Kwun Tong and Shek Kip Mei was opened to the public.

Mtrc79It is also 40 years ago this month that another order was placed with Metro-Cammell for the growing Hong Kong MRT, just three years after they were awarded a £35 million order for 140 trains in November 1976. GEC traction and Metro-Cammell’s combined success with the first orders, was followed in November 1979 by another £40 million order for a further 135 multiple unit vehicles for the Kowloon-Canton railway.   This came hard on the heels – just five weeks later – of the order for a further 150
 metro cars worth £50 million for the MTR routes.

Original MRT train - from Railpower 39

Almost straight out of the box. An original Metro-Cammell built MRT train for Hong Kong. Though much changed in appearance, passenger facilities and traction control systems, they are still at work today.

By that time, contracts worth over £100 million for electrical, mechanical and civil engineering work had already been placed with UK engineering firms. The initial multi-contract E11 awarded by the MRTC involved GEC Traction and Metro-Cammell, requiring close co-operation between the three organisations for the supply and installation of the electrical and mechanical equipment.

The first contracts on the Modified Initial System were placed almost ten years after a report on the problems of road traffic congestion was published by the Hong Kong Government. This was aimed at resolving the territory’s transport question further.

Hong Kong MTR MapThe mechanical and electrical contracts placed by the Hong Kong Government for the Modified Initial System (MIS), were awarded against an extremely tight schedule. The first train set was scheduled for delivery in 1979 and the whole 15.6 route km system was planned to open early in 1980.  The MIS for Hong Kong was swiftly followed by the Tsuen Wan extension, with the obvious demand for more rolling stock, and by 1982, GEC Traction had supplied more than 400 sets to the MRT Corporation.

Alongside this, the 34km route of the Kowloon to Lo Wu line was being doubled and electrified at 25kV a.c. using a simple, overhead catenary construction, similar to that used by British Rail in the UK.

In the export market, the Hong Kong MRT was considered the first major project success for GEC Transportation Projects, established as a subsidiary of GEC Traction and based in Manchester, to design and manage such turnkey projects. The Mass Transit system was entirely new, with two lines providing links between the Central District of Hong Kong Island and the business and residential areas of Kowloon. The mass transit railway used an overhead contact system, electrified at 1500Vd.c. It was intended at one time that this line would be
 electrified using a shrouded conductor
 rail, but it was decided that safety
 margins would be improved using 1500Vd.c. catenary. At the same time, two extensions to the MRT were planned 10.6km to Tuen Wan, and the 12.5km Island Line, with completion in 1986.

Kowloon to Canton (Lo Wu)

Work began on the modernisation of the 34km Kowloon-Canton Railway, in early 1980, with the design, installation, supply and commissioning of the overhead equipment awarded to Balfour Beatty Power Construction.

KCR Car as new

The original emu’s for the Kowloon-Canton Railway, built by Metro-Cammell, with GEC Traction power equipment. Initial tests were carried out on the Tyne & Wear Metro in the UK, before being shipped out to Hong Kong.                    Photo: RPB/GEC Traction Collection

Metro-Cammell
 had also signed a contract with the Hong Kong
 Government to supply 135 electric
 multiple unit vehicles, to operate 
inner and outer suburban services on the
 Kowloon Canton Railway, which was being
 modernised and electrified. The fleet of rail
cars, worth £40million, were designed to be operated as
 three-car sets with up to four sets running in 
multiple.

The electrical equipment and traction power infrastructure was again being supplied by GEC Traction, from Preston and Stafford, with the MRT and extension lines electrified at 1500V d.c overhead, and the Kowloon to Canton route at the standard 25kV a.c., overhead.

Rolling stock

The trains for both the
 Mass Transit and Kowloon-Canton 
Railways, were built by Metro-Cammell. The original mass transit cars
 had a very high capacity, with seats 
for 48 passengers, and standing room
 for more than 300, in a length of 22m
and overall width of 3m. At the time, the MRT cars were believed to have the highest capacity of any metro car in the world. With such high density, getting passengers on and off required the provision of five pairs of sliding doors on each side of the car.

GEC Traction Hong Kong BrochureThe cars for
 the Modified Initial System, and Tsuen
Wan Extension were arranged in six-car formations, and due to the demanding operating requirements, all axles were motored, to give a nominal acceleration of 1.3m/s 2. Though this was increased in practice, because many of the stations along the route were constructed on ‘humps’. The MRT cars, ultimately in eight-car formations were required to operate at 90 seconds headway between trains, and a two minute intervals with ATO (Automatic Train Operation) in use.

The body shell was common for the three types of car on the KCR, and similar to that for the Hong Kong Mass Transit cars. They differed largely only because the KCR sets had fewer side doors, and narrower gangways between cars than the MRT vehicles. Electrically the KCR propulsion equipment was almost entirely derived from that supplied to British Rail.

GEC Traction supplied the propulsion equipment, which included conventional, camshaft control systems,· although consideration had been given in the early stages to using more advanced, thyristor chopper control. An important advantage of using chopper control is the system’s ability to regenerate during braking, but the hump layout ofmany ofthe mass transit stations rendered its application less useful. By 1982, Metro-Cammell had received orders for 558 vehicles for the mass transit system, with the final contract covering 22 power and 106 trailer cars for the Island Line extension. A total of 18 powered cars were ordered with thyristor control equipment in later years, in orders worth some £l0m.

In the UK, during the 1970s, the Tyneside Metro was constructed, which proved beneficial for both Metro-Cammell and GEC Traction, since te first Hong Kong MRT cars were sent for trials on the Tyneside Metro’s test track, prior to dispatch to the Far East.

MTR-train

Still recognisable as a Metro-Cammell MTR train, despite the modifications to the front end, as the train enters one of the elevated stations on this hugely busy system.                 Photo: ThomasWu726 – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6005011

The orders for Metro-Cammell and GEC Traction continued to come in during the 1980s, with additional MTR trains for the Island Line extension, and more three-car trains for the KCR. The last order for what was later classed as M-Class trains, were delivered from Metro-Cammell in Birmingham in 1988/89. However, it was not the last order, as in 1992, and order was placed with GEC Althom (who had by then acquired Metro-Cammell), for another 64 cars, for the MRT.
The MIS trains built by Metro-Cammell were – indeed are – classified as “M-Stock” by the MRT in Hong Kong, and they have undergone various improvements and changes. The initial modifications included altering the front end, to “modernise” its appearance, and the fitting of passenger information systems. All of the original builds were fitted with GTO Chopper control between 1992 and 1995.

This final order included an option for 24 further vehicles, and all 88 were supplied to Hong Kong as a set of parts, which were assembled at the Kowloon Bay Depot. Some of these – by now classed as H-Stock – were refurbished for use on Hong Kong’s Disneyland Line.

The original Kowloon-Canton units were designed for longer journeys, and included slightly different layouts or inner and outer suburban trains, but the general construction is similar to the mass transit trains, with main structural profiles common to both designs. In three-car sets – up to four sets could be coupled in multiple to give a 12-car train), the outer suburban sets have a capacity for 884 passengers and 961 for the inner suburban sets. With full width driving cabs at each end, every three-car set is a self-contained unit.

We see climate as a 21st century issue, but of course in tropical, and sub-tropical climates, there has always been the ever present problem of torrential downpours, from storms – be they hurricanes or typhoons, along with dramatic temperature variations. The climate is such in Hong Kong, that the vehicles, and their passengers were expected to withstand extremes of temperature, from 0 to 40 degrees, up to 100% humidity, and even required to run through flood water in some sections, as a result of the impact of Typhoons.

hong_kong_metro

The original Metro-Cammell built KCR trains were refurbished in the late 1990s by Alstom. This view taken in the Hong Kong Kowloon Bay Depot workshops shows work being carried out.      Photo: Alstom/RPB Collection

These trains are still in service today, but have undergone a number of changes, and the original Hong Kong MTR and Kowloon-Canton Railways have seen considerable changes and modifications since the 1980s.  The original KCR trains were converted by Alstom to 12-car sets, and the original 3 sliding doors were increased by the adition of a further 2 doors per side, and an emergency door in each cab front. The cab fronts were also modified, and entirely new passenger information systems were installed – all of this work was carried out between 1996 and 1999, to extend the life of these trains. Further changes included the fitting of ATO/ATC control systems, and today, 20 years later, they are still in use – now classed as Mid-Life Refurbishment Train (MLR).

A196 葵芳南咽喉

A196 entering Kwai Fong Station – March 2019    Photo: N509FZ – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=76984682

So much has changed over the years in Hong Kong, what with the new airport at Chek Lap Kok, and the suspension bridge carrying the metro to the airport, along with further new lines, and a link to the Disney resort. On the railway, several refurbishments of the original M-Trains – which are still running, and the fitting of automatic train Control (ATC), the now almost universal Platform Screen Doors on metros around the world – but the trains from Washwood Heath are still running – for now.

MTR_first_Q-train_in_Qingdao_Sifang_factory_test_track

First of the latest Q-trains that will replace the old Metro-Cammell stock for Hong Kong’s MTR. Here seen at the Qingdao Sifang factory test rack. Photo: Zhongqi Qingdao Sifang Locomotive & Rolling Stock Co., Ltd. – http://www.crrcgc.cc/Portals/36/BatchImagesThumb/2018/0129/636528335151471991.jpg, CC BY-SA 4.0  https://commons.wikimedia.org /w/index.php?curid=81272688

According to reports announced in 2015, the MTR Corporation is to spend HK$6 billion on its largest- ever order of trains from a mainland manufacturer. 93 eight-car trains will replace all of the Metro-Cammell currently operating on the Kwun Tong, Tsuen Wan, Island and Tseung Kwan O lines.

Mainland maker CSR Qingdao Sifang is delivering the trains between 2018 and 2023.

Links:

 

-oOo-

North American Steam

Standard

As is well known, steam power was invented and developed in Britain country for both stationary and locomotive purposes. Its introduction and use in the United States very likely came about as a result of illegal activity here in England. At around the end of the 18th and beginning of the 19th century, it was deemed an offence by ·the government of the day to transmit any information about the development or use of steam power to North America. In fact it was punishable by a one-year prison sentence in addition to a £200 fine! But, evidently news of James Watt’s success was transported across the Atlantic it would appear that industrial espionage is not a modern phenomena!

The first practical use of steam power, as applied to railways, in the USA, was first witnessed in the shape of locomotives imported from England by the Delaware & Hudson Canal Co., which operated a sixteen-mile horse and gravity operated coal railway in Pennsylvania. The first steam locomotive to run in the USA was in fact the English built “Stourbridge Lion”.

Replica Stourbridge Lion - United_States_National_Museum_(1956)_(14781532311)

A replica of the first steam loco to run in the USA – built in 1932 by the Delaware & Hudson Corp.   Photo: Internet Archive Book Images https://commons.wikimedia.org/w/index.php?curid=43475790 

Best friend

Built at West Point Foundry, the “Best Friend of Charleston” was the first home built steam loco for a US railroad. Photo courtesy Norfolk Southern Corp.

The first American built locomotive to be operated by an American railroad, was built at the West Point Foundry in 1830 and made its inaugural run for the South Carolina Canal and Railroad Co. of Charleston, on Christmas Day 1830. The locomotive was appropriately named the “Best Friend Of Charleston”. In appearance it hardly resembled a steam locomotive as we know it at all, powered by a vertical boiler positioned behind the driver, driving four coupled wheels it was not entirely dissimilar to the rather less successful “Novelty” locomotive, entered for the Rainhill Trials in England the previous year. But, it was a beginning, from which the North American steam locomotive was developed, ultimately to produce some of the World’s largest and most powerful steam locomotives ever to be built.
 In the early years of railway development, steam locomotive design in the USA progressed along similar lines to that of their European counterparts.

But then, there came to be a number of what at first could be seen as small, technical differences, providing a divergent path along which North American loco. design progressed. One of the principal foundations to this alternative to the British school of design, was the predominant use of bar frames as the principal technique of chassis construction, whereas in Britain, plate frames were the preferred method. Although bar frame techniques were actually first Introduced in the U.K. by Edward Bury, their development in the USA resulted ultimately in the use of techniques for manufacturing the chassis or frames of steam locomotives as enormous one piece castings. In many cases with cylinders and ancillary items of equipment ”cast on”. Style, an arbitrary idea in itself, was possibly the one most obvious difference between North American and British types.

North American 2 copy

The first cantilever trestle bridge in the USA, carrying the Cincinatti Southern Railroad across the Kentucky River, with a typical passenger train of the period. The “High Bridge” was opened in 1877, and rebuilt in 1911 – this view is of the original bridge. Photo courtesy Norfolk Southern Corp./RPB Collection.

Whereas in this country designers placed great emphasis on the aesthetic appeal of their machines, the era of elaborate ostentation in the USA reached a peak in the 1860s and. 70s. These then gave way to more logical concepts of the steam locomotive as a machine, where it was not a sin to trail pipework and fittings
 on the outside of the locomotive, making the working parts more accessible and maintenance infinitely easier.

CP_steam_loco

A recreated Central Pacific # 60 steam locomotive at the Golden Spike National Historic Site in Utah          Photo: Mr Snrub at English Wikipedia. – Transferred from en.wikipedia to Commons., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3488328

To many of us though, thinking of nineteenth century design in the USA, immediately there comes to mind the wood burning 4-4-0 types, replete with ‘cowcatchers’, ornate bell and enormous chimneys. (Diamond stacks as they were known.) These locomotives were a tradition, if not a legend of North American railroads, and engendered a folklore and many legends of their own., from ‘Casey Jones’ to the ‘General’. The latter, in particular, having quite an entertaining history, culminating in its seizure by Union forces during the Civil War. The elaborate ornamentation of some of those mid-nineteenth century designs achieved well nigh indescribable levels, with gold plated scrollwork and paintwork and lining schemes that would have done justice to any regal palace!

By 20th century standards such locomotives were small, yet it’ was with just such engines as these that the vast mid-west and western seaboards of the USA were penetrated. Possibly the most outstanding achievement being the linking by rail of both east and west coasts at Promontory, Utah on May 10th 1869.

Alabama Southern 4-6-0 - 1905

Typical of US motive power at the beginning of the 20th century was this 4-6-0 on the Alabama Southern Railroad in 1905.    Photo by: By Internet Archive Book Images. https://commons.wikimedia.org/w/index.php?curid=43245503

The locomotives of the Central and Union Pacific Railroads were brought
 to within feet of each other and the ceremony completed by driving in a golden spike. From this point, railroading in the USA entered a period of explosive growth, as the government endeavoured to foster settlement of the West. New routes and companies sprang into existence, almost on a par with the ”Railway Mania” period in this country. In terms of Locomotive design though, there the resemblance ended. Railway companies in this country, for the major part, relied on their own designs, whether built in their own workshops, or by contractors. In the USA however, contractors to a much greater extent were relied upon to produce the designs as well as constructing the engines.

There emerged the idea that locomotive manufacturers as specialists in design and construction of steam locomotives would develop their own ranges of ‘standard’ designs, to be bought virtually, “off the peg”. Naturally there were exceptions, though in the sphere of technical development, the manufacturers were often first in the field. This approach was not unknown in this country, but developed to a much greater extent in the USA. A resultant feature being that whereas here it is traditional to refer to a class of locomotive by its owner and designer; in the USA it is almost invariably that of the manufacturer. The names of which were virtually household in this country also; Baldwin, Lima, Alco, etc. Many of these companies’ products were owned by almost all railroads, where the manufacturer, being a specialist, designer and builder, could supply in greater numbers than could the railroads, who were left free to concentrate on the business of carrying passengers and freight.

In the early years of the 20th Century, locomotive design in the USA was moving towards progressively larger types, with which, ultimately, that country became world famous. Its largest locomotives though, owed their development to a French engineer. These were enormous articulated designs, capable of hauling the heaviest of loads, and often in many cases, their tenders alone were larger then the largest British Pacific locomotives, indeed, particularly with the articulated types of the Union Pacific and Norfolk &Western Railroads, even the fireboxes could be bigger than an average living room.

AAR 7 copy

A picture to evoke nostalgic memories of steam, as a pair of Northern Pacific’s giant Mallet articulated locomotives stand in the yards at Missoula, Montana, and ready to handle the huge transcontinental freight working. Photo courtesy; Association of American Railroads.

The most popular form of articulation in N. America was the Mallet arrangement, whose originator was the French engineer M. Anatole Mallet. Basically it consisted of two separate chassis supplied by a single boiler, the leading chassis being pivoted about, the rear. Principle wheel arrangements of this design were of the order of 2-8-8-2, 4-6-6-4etc. Although originally designed to make use of compounding arrangements, most of the N. American types were simple expansion machines, Such locomotives were designed primarily for heavy freight haulage, although on the Union Pacific, a smaller version of the enormous 4-8-8-4
 “Big Boy”, albeit a not much smaller 4-6-6-4 type, was intended for fast, long distance passenger turns. (Long distance on the Union Pacific, was the 5000 odd miles between San Francisco and Chicago). Many railroads in the USA used the articulated types, but there were of course some quite remarkable exceptions. Notably, on the Pennsylvania Railroad, whose rigid frame 4-4-4-4 and 4-4-6-4 locomotives, known forever as Duplexii, were of comparable proportions to the articulated types. Built during the “Streamline Era” and sporting an air smoothed casing, these were really spectacular designs.

C&O Class K4 at Chief_Logan_State_Park_-_C&O_2755

C&O Class K4 at Chief_Logan_State_Park, as preserved at Logan, West Virginia. 92 of this 2-8-4 design were built for C&O, where they were known as the “Kanawha” type, and although a number of other railroads operated them, they were also referred to as the “Berkshire” type.     Photo By Brian M. Powell, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9374221

 

 

 

 

 

 

 

 

 

 

 

 

Santa Fe 5011 Texas Class 2-10-4 No.5017

Santa Fe “5011” “Texas” Class 2-10-4 No.5017. Built by Baldwin in 1944, this example is now at Green Bay Railroad Museum, 8/70. Baldwin started building these in the 1930s, and they were the heaviest (247.5 tons) and most powerful (T.E. 93,000 lbs) “Texas” type ever built and also had the largest piston thrust (234,000 lbs) of any locomotive.                 By Hugh Llewelyn – 5017Uploaded by Oxyman, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=24387751

Steam in the USA reached its zenith in the, early 1930’s, at the beginning of that decade there wore over 56000 locomotives in service. It was at this time, marking the ·beginning of the “Streamline Era”, that some of the most impressive and largest locomotives were built. The largest, as we have noted, were the mammoth Mallet articulated types, for heavy freight haulage. On the passenger side, as in this country, passenger schedules with improved timings, demanding higher speeds, dictated the design of more powerful locomotives, capable of handling the heaviest loadings. But, whereas in this country passenger locomotive design reached a peak with the heavy 4-6-2 Pacific types, in the USA. passenger locomotives became even larger. Amongst the largest and most impressive of these were perhaps the 4-6-4 Hudson and 4-8-4 Niagara types for the New York Central Railroad.

North American 1RPB Photo 488 NYC Niagara No 6000

Classic North American steam locomotives for express passenger or freight services, are perhaps nowhere better illustrated by the streamlined 4-6-4 “Hudson” and 4-8-4 “Niagara” designs for the New York Central Railroad.

Photos: Assoc of American RRs / RPB Collection

Of these, the former was probably the more popular for passenger haulage, the design being used in quantity by most, if not all of the U.S. Class 1 railroads. The New York Central’s design was possibly the most successful, though seeing a variety of improvements and alterations from its first inception, the overall design remained the same, its capacity for sustained high speed haulage of heavy loads was surpassed by few, if any others.

It might well be imagined that all North American steam locomotives were of massive proportions, such however would be far from the case, though it must be said that even the “Branch Line” locomotives were more often than not
 as large as many British main line types. Again, not all locos. were conventional in design. Apart from the several narrow gauge lines, the USA possessed some quite unique examples in the “Shay” and “Heisler” geared drive locos. intended for use on logging railroads, where the gradients, curves and clearances were often extremely severe.

The changeover from steam to diesel traction was begun earlier than here, but unlike this country, when the final elimination of steam took place, the railroads had a fairly lengthy experience of the new motive power behind them. The first diesel appeared on the Central of New Jersey Railroad in 1925. It was not an immediate success however, its power to weight ratio made it uneconomic, but these were problems of course, that were subsequently overcome, since 27 years later, the number of diesel locomotives outweighed that of steam. An interesting comparison can be made with these figures; in 1929 there were only 22 diesels in service, compared with 56,936steam types, by 1955 diesels were in the majority with 24,786 and only 5,982 steam. For steam, the worst years and complete elimination came between 1955 and 1962. During this period the number of diesels rose by 3,318; steam locomotives being reduced from 5,982 to 51! There are still, at the time of writing, seven steam locos in service on Class l railroads, six of which are narrow gauge types.

-oOo-

Further Reading & Useful Links:

From Railway Matters: New York Central Giants

 

 

Class 158 – New Lights for Old

Standard
Upper Image:   A Class 158 twin unit entering Edinburgh Waverley station.

Photo courtesy: Ad Meskens – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29600938

The BREL built “Express Sprinter” dmu’s of 1989-92, constructed at Derby’s Litchurch Lane Works are some 30 years old now, and have been dispersed around the UK through BR’s Regional Railways Sector, to the post-privatisation TOCs.  The 40 two-car sets allocated to Abellio/Scotrail may soon be receiving another minor refurb, with a proposal to fit LED lighting in the driving cabs and saloons – or perhaps not.

LED Procurement Tender Notice extract

Extract from the August 2019 procurement notice for Abellio Scotrail

The successful tenderer was to be retrofit the 40 2-car sets with the fitting – and the ongoing management of these installations, and the original tender was announced in December 2018, then cancelled, and re-posted in July 2019. Both the interior lighting question and these last BR built multiple units have had a bit of a chequered history, and their design has been unkindly referred to in some quarters as a “garden shed” approach. Yet still, after more than three decades of service, they are fulfilling some of the intermediate to long distance passenger train duties – at least in Scotland.

Class 158 in 1990 on Glasgow to EdinburghThe Class 158 “Express Sprinter” were the 3rd gestation of the British Rail “Sprinter” range of 2nd generation dmus. Unlike the earlier “Provincial Sector” designs, these were not designed from either older emu designs, like the ‘Sprinter’ series, but they were driven by the 1980s financial constraints on BR. At the time, between 1989 and 1991, the application of inter-city style seating and layout for these longer distance regional services were still dependent on the first generation dmu’s. These were by this time more than 30 years old, and increasingly unreliable, and the refurbishment programmes of the 1970s really did nothing other than a new paint job, or interiors. Then there was the ongoing cost of asbestos removal from the 1950s designs, which, coupled with the financial strictures and operations in the days of sectorisation in the 1980s, ultimately, led to the building of new multiple units.

The end result was the “Express Sprinter”, built at Derby, to the BREL design, and using the key features of the main line and inter-city rolling stock designs, to meet the increased needs and performance criteria for Provincial Sector. The BREL built 158s were first put to work on the Scotrail Sector, over the time when BREL was being privatised by the government, firstly as BREL Group Ltd under ABB Transportation, and later as Adtranz (ABB-Daimler Benz). Each of which is now consigned to the history books. BREL built 447 vehicles, most as 2-car sets, but with a small number as 3-car, and the last was handed over in 1991.

The idea of this latest modification for Abellio ScotRail Ltd was to gain the benefits from energy saving and an increased lighting lifespan on these trains. The most recent upgrade/refurb of the Scotrail units was carried out at the now closed Springburn Works, then operated by Knorr-Bremse, back in 2015.  The work carried out then included the current ‘Saltire’ livery and modernisation of the interiors with new carpets, surface finishes and toilets.  At the same time, the 137-seat trains were equipped with new CCTV systems and automatic passenger-counting systems.

The 2015 renovation and upgrade/update work was carried out at Springburn under the Railcare banner.

The 2015 renovation and upgrade/update work was carried out at Springburn under the Railcare banner.

So, new lights for old may be seen as another minor, but useful upgrade to this long-lived type of rolling stock.  The technology itself may not seem so new, but ranks up there with proposals some years ago that one single light source could supply – through the use of fibre-optic cable – individual lighting throughout a train.  Gone are the days of 60-watt incandescent bulbs in the centre of the passenger compartment – now departing are the harsh glare of fluorescent tubes, with or without luminaires on the coach ceiling.

Some 17 years ago, I wrote about the advances in lighting technology on stations and on trains, for passenger circulating areas, and for on-board functions.  It was back then when the use of laser-optics was being advanced as the way forward, like this:

The Future is Fibre-Optic

  • A great deal of advancement has been seen recently in the use of fibre-optics for lighting purposes. Unlike conventional lighting, with fibre-optic technology, only the light is transmitted. The principal areas where this technology can be used may be summarised as:

  • Difficult access (lack of height and space)

  • Reduced maintenance (multiple lighting points from one lamp)

  • Where objects may be sensitive to heat and ultra violet rays

  • Regulating light in specific places, with minimum visual intrusion

  • Use of fibre-optic cable in data communications, and indeed for entertainment or decorative purposes is not new, but it is state of the art as far as the specialist railway environment is concerned. In principle, its use is based on light from a single source – probably the most obvious departure from conventional practice – and transmission of light along a group of fibres, with the light emitted in a concentrated beam at the remote end of each fibre. This technology in railway use could lead to the elimination not only of the multiple lamps and luminaires, but also the costs of maintaining illumination at recommended and safe levels – especially on board trains.

  • Applications of this technology for the passenger are perhaps most obvious for such activities as reading. Other uses could benefit the train crews, on the driver’s control desk instrumentation – much like their use in cars today. A major advantage is the fact that no heat is generated at the point of illumination, so perhaps a beneficial application could see its use in areas where light but no heat is needed – fuel tank levels, or similar gauges and indicators in hazardous or hard to reach areas for instance. Alternatively perhaps, a way of providing a light source for CCTV and other monitoring systems regularly used today.

  • Ultimately, the future use of fibre-optics in railway lighting applications looks positive. As the production of second-generation metal halide and micro discharge lamps increases the efficiency of the technology, the future is indeed brighter.

This seemed to be the way forward back at the beginning of the 21st century, and now, approaching ¼ of the century, the use of LED (Light Emitting Diodes), has become the lighting source of choice. In fact, LED tube lighting is an ideal candidate for retrofitting to the good old standard fluorescent tube lighting on trains, with some designs being a simple replacement of the older tubes, using the same fittings. The technology itself is claimed to result in an energy saving of up to 75%, and has been in use with TfL in London for the past couple of years, reducing both energy and maintenance costs.

Shining a light on historical sites too, LED lighting has been installed at Rainhill on Merseyside – so even the location with one of he greatest claims to fame for Victorian ‘new technology’ is now an example in the 21st century – 190 years later. Of course, today everything has to have the adjective “smart” attached to it, and lighting on the railway is no exception, so now we also have ‘smart lighting’ – for which no doubt an ‘app’ will be available – soon?

I started off this little item just thinking about the Class 158 and its new lights, but there is much more to lighting on the rail network today, so we will revisit this story for a more detailed look at the technology shortly. So much for fibre-optic lighting!

Class_158_No_158721_(14802782564)

Class 158 721, awaiting departure from Inverness in “First Scotrail” colours.   Photo: Peter Broster – Class 158 No 158721, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=49576344

-oOo-