Preston to Mumbai

Standard

The railway network of India is vast, and its cities have extensive suburban and metro networks, with Delhi seeing one of the most recent projects to build a 122 km double-track Orbital Rail Corridor. The route will run around the west of Delhi from Palwal in the south to Harsana Kalan in the north, and provide some relief for the severe congestion on the capital’s inner routes. The metro routes in and around Kolkata have also been expanded in recent years, with October seeing the first underground station on the East-West metro line opened for revenue service.

But the first electrification work for India was sanctioned by the government in August 1922, as the railway’s traffic continued to increase, and the escalating costs of coal for steam hauled services.  Contracts were let to the Tata Hydro Electric company to provide the power supplies, and English Electric for the supply of substation equipment including rotary converters, circuit breakers and control panels.    The 110,000V a.c. supply was delivered to three principal substations at Dharavi, Kalyan & Thane, where it was converted through the English Electric rotary converters to 1500V d.c. as the feed to the overhead catenary.

Each of the substations was equipped with a pair of 1,250 kW, 750V converters, connected in series – the total installed power was 15,000kW.  At Kalyan, three of these 2,500kW units were installed, and used English Electric’s own design of automatic switching equipment.  The line’s outdoor switchyard was located here too, and included electrically operated oil circuit breakers and the step up transformer for the 110,000V incoming supply, along with other control and auxiliary equipment.

In addition, English Electric were awarded the contract for the new motor-coach trains – not strictly multiple units, but a powered coach and three trailer cars, all supplied from Preston back in 1925. The job involved a section of the then Great Indian Peninsula Railway’s Bombay to Kalyan line, and followed a review of the line’s capacity initially undertaken in 1913, but the work postponed until after WW1. The subsequent review decided that electrifying the Harbour Branch would be the only way to improve operations there and follow that with additional electrification work as deemed necessary.

All told, it might be described as a good contract win for English Electric.

But, even before the first section was completed, the railway company committed to electrify the extra 22 miles to Thana, and by 1928, it was extended to Kalyan, some 34 miles from the starting point. In the image at the head of this post, the map on the left shows the extent of the initial electrification, with English Electric’s involvement, whilst the second shows the routes in place in 2019. On the second map, the original start and end points, together with the two main stations in between are highlighted by a box.

The work of English Electric in the 1920s, in promoting electrification was comparable to the projects that involved Metropolitan-Vickers, their arch competitor in Manchester. In this case, Preston Based English Electric secured a contract to provide equipment for the infrastructure and substations, along with 53 four-car trains. The line was electrified, in common with many others around the world, at 1500V d.c., and this was the first electrification project on the Indian 5ft 6ins gauge. It was rapidly followed by electrifying a further section of the GIPR (Great Indian Peninsula Railway).

Opening Day

On 3rd February 1925, the first train on the Bombay Harbour Branch from the Victoria Terminus to Kurla set off from Platform 2, at 10.00 with motorman Jahangir Framji Daruwala at the controls, under the watchful eyes of a crowd of onlookers, and the then Governor of Bombay, Sir Leslie Wilson.  

This image has an empty alt attribute; its file name is ee-train-at-kurla-station.png

So, this first Indian electrification celebrated its 95th anniversary in February 2020 – an achievement reflected in a number of publications.   The original line into the area from Kurla, was 9 ½ miles long, but ended short of the harbour, and in order to complete the extension and electrify the line, a bridge was constructed to carry the line over the goods yard at Wadi Bunder.  This was seen as the most cost-effective way to get the Harbour Branch into the city terminus at the time, but involved two 1 in 42 gradients on either side of the goods yard.  At the time of its opening in 1925, this gave an alternative route from Kurla to Victoria Station – this was the first phase of the electrification.

The newly built car sheds at Kurla

Phases 2 and 3 took the electrification on from Kurla to Thane, and finally Kerula, with the rolling stock numbers increased as the work progressed.  The Bombay scheme was rapidly followed in the space of a few years by work on the GIPR (now Central Railway) main line, and the suburban lines of the south-eastern city of Madras, or Chennai as it is today.

For the first electrified railway in India, the Preston powered motor coach trains consisted of a single motor coach with 4 x 275hp traction motors, and three trailer cars.   Each of the motor coaches was fitted with a pair of roof mounted pantographs – although only one was used to draw power from the contact wire when running.  Power was fed directly to the traction motors by opening and closing contactors through a camshaft, where the angle of the camshaft is determined by the position of the driver’s master controller handle, and in turn fixes the number of contactors closed, or opened.  This simple camshaft control was used for many years on early electric motor coach trains around the world, and for English Electric was usually driven by a small electric motor.  Others would be based on a pneumatic motor – but the ‘all electric’ form was often favoured in Preston.

Driver’s position and master controller. The controller is typical of the designs used by Dick, Kerr Ltd. who became English Electric, in Strand Road, Preston.

The driver’s position in the motor coaches was standing in front of the window, as per the illustration – looking at which suggests little difference in appearance with the Dick, Kerr tramcar controller that they will have been based on.  However, although English Electric had received this order at the time the Bombay Harbour Railway was being electrified, according to the company’s records they were all in service by 1928, but this includes the vehicles supplied for the 2nd and 3rd sections of the route.  Before this too, in 1926, the company had delivered a pair of battery locomotives, with a Bo-Bo wheel arrangement, weighing in at 50 tons, and operating at 440V d.c., also for the Bombay area.  These were similar in appearance to the Bo-Bo locomotives delivered to Madras (Chennai) around the same time.

Monsoons & Traction Motors

The original 275hp traction motors with their diverter valves that would be closed when running over flooded tracks to prevent damage to the motor. This was needed before the work to divert monsoon floodwaters in the Bombay and harbour area had taken place.

For the traction motors on the single motor coach, special provisions were required to protect the undercar equipment during the monsoon season.  There had always been problems on the route during monsoons, even with steam traction, as flood water would put the fires out, so now, the traction motors had special air valves fitted to divert floodwater away from the sensitive machinery.  The motors were actually the standard self-ventilating type, whilst other items of equipment, including the camshaft control gear was housed in the main body of the car, above the floor. 

Because of the problems caused by flooding during monsoons, and not just for the railway, work was undertaken to divert floodwaters away from the line, which resulted in changes to the power equipment on the motor coaches built for service as the electrification reached Thane and Kerula.  The use of the special diverter valves fitted on the first batches was discontinued on the stock delivered for the final section of the route to Kerula.

Considering that each four-car train was equipped with a total installed power of 1100hp, this may have been necessary to some extent, due to the heavy weight of Indian rolling stock during this period.  In this case, each of the original four car sets weighed more than 200 tons when empty.  They were carrying huge numbers of passengers too, and in the first year of operations, over 16 million were carried on the new electric trains, and this had increased again by over 68% by 1928 – an undoubted success, to say nothing of the revenue.

The scene was set for expansion of India’s electrified rail network, and driven forward by the railway company, the next steps would include main line operations, and with some fairly unusual designs for motive power.  Following the Bombay suburban success, the GIPR company then embarked on a comprehensive program of electrification, involving routes from Bombay to Igatpuri and Poona, negotiating the severe gradients climbing the Ghats to the Deccan Plateau. 

Here again English Electric were responsible for the complete project, which, in addition to the provision of the catenary, substations and other items of infrastructure, included one of the largest water generating plants manufactured in the UK.  This latter, like similar machinery for the Sao Paulo Electric Co. in Brazil, was for installation in the Tata Power Co.’s generating station in Bombay.  the name of Merz & McLellan, or more precisely at that time, Merz & Partners, appears as consulting engineers to the project, just as they had been in South Africa, and elsewhere in the former British Empire.

Today, 95 years on, the electrified suburban lines of Mumbai have grown significantly, as indeed has the population, and although the present day locomotives and trains have a much more international flavour, English Electric, and Preston, Lancashire remain closely allied to the first scheme.

-oOo-

Useful links – worth a look:

This image has an empty alt attribute; its file name is irca-logo.pnghttps://www.irfca.org
This image has an empty alt attribute; its file name is historical-images-flickr-logo.pnghttps://www.flickr.com/photos/124446949@N06/
Mumbai Local : A Journey Through Mumbai Harbour Linehttps://www.youtube.com/watch?v=G-O7ztUOPv8

Merseyrail Trains’ Messy Graffiti

Standard

Fascinating and sad story – the new Merseyrail electrics have not even entered service, but stored at Tonbridge in Kent, they’ve already received a repaint, courtesy of local vandals.  The trains from Stadler’s Wildenrath test track in Germany had been sent to Tonbridge on their way to Merseyside, and are now having the graffiti removed at the Merseyrail Kirkdale depot.

These are the new Class 777 units, and 52 of the 4-car articulated sets were ordered back in 2017 from the Swiss manufacturer, with an option to buy another 60. The present Class 507 and 508 will all of course ultimately disappear. The first of the new trains was delivered in January, but this latest arrival has resulted in the need to spend a significant amount of money making the new trains look new.

This video shows some shots, courtesy of the Railmen of Kent Twitter feed –  https://twitter.com/RailinKent

 

Merseyrail’s network features one of the oldest sections of electrified rail network in Britain, opened in May 1903, it was known as the Mersey Railway, running from Liverpool Central to Rock Ferry.  It was in fact the first steam railway to be converted to electric traction.  This was a complete electrification contract, awarded to the British Westinghouse Co. (later Metropolitan-Vickers Ltd) – although all of the electrical equipment was imported from Westinghouse USA.  British Westinghouse was set up in 1899 on the Trafford Park estate in Manchester by George Westinghouse, hopin g to continue to expand the electric railway and tramway markets in the UK.

 

 

The other early component of Merseyrail was the Lancashire & Yorkshire Railway Co.’s line from Liverpool Exchange to Southport, with the section from Exchange to Crossens (just north of Southport) opened in 1904, and on to Aintree in 1906, and then Ormskirk in 1913.  As with the Mersey Railway, 600V d.c. was the preferred supply, via the conductor rail, and the same supplier.  Also, as with the Wirral line, the railway had its own power station, based at Formby, and the generating equipment was also supplied by British Westinghouse.

New Merseyrail with original

The leading coach is one of the 1920s build from Metro-Vick, but still coupled to three of the original 1903 cars of Westinghouse USA design

Over the years, the network has been expanded, and with some of the most extensive work taking place long after World War 2, in the 1970s, and in effect creating “Merseyrail”, which used variants of the British Rail designs of 3rd rail trains. The Class 507s and 508s, which provide services today were refurbished by Alstom between 2002 and 2005, but the new Class 777s provide and implement some of the latest thinking for suburban and commuter train designs.

Such a shame that delivery of these latest sets have been marred by such mindless vandalism. I know, all trains – condemned or just stabled at the end of the working day – have been subject to the works of amateur Banksy’s, but this incident even made it to the BBC’s news services:

BBC News story image

Still, once they have been cleaned up and restored to new at Kirkdale, Merseyside will have some superb new trains to travel on – from Ormskirk and Southport, to Birkenhead and Rock Ferry. Still electric after 117 years.

This video shows the new trains arriving on Merseyside, and on Merseyrail lines for the first time in January 2020:

-oOo-

Hong Kong MTR & Stockport

Standard

The UK business of Davies & Metcalfe was most famous for key components on locomotives and rolling stock, from steam injectors, to brake systems and latterly to automatic couplers for rapid transit and light rail systems.

D&M CouplersMost of the company’s business was carried out from the wortks in Romiley, Cheshire, south of Manchester.  It was a long established family business, begun in North Wales in Aberystwyth in 1878, and after a move to Romiley became a household name in manufacturing steam locomotive injectors in the 20th century.  Diversification into braking systems came by way of a partnership with the Swiss company Oerlikon, and sold braking technology under the brand “Metcalfe Oerlikon”.

These arrangements continued after the UK’s railways were nationalised in 1948, and Metcalfe-Oerlikon brake systems were fitted to many diesel and electric locomotive and rolling stock designs. By the 1970s, when the UK rail industry was awarded the contracts to design and build the Hong Kong MTR trains, Davies & Metcalfe,  supplied the braking technology and the essential, automatic, close-couplers for the new rolling stock.

D&M MontageThis comprehensive activity continued throughout the decades, and in 1989, Davies & Metcalfe appeared at ‘Light Rail ’89’ in Bristol, and were  collaborating with Bergische-Stahl-Industrie.  The Romiley company were then offering a ‘one-stop shop’ for  Brake Control Systems, Safety and Vigilance Equipment, Wheel Slip/Slide Control Systems, Multi-function Automatic Couplers, Disc and Track Brakes and, Transmission Drive Systems.

D&M Braking kitA number of changes took place in the industry in the last years of the 20th century, and the company continues to supply key components to this day, whether it is for Hong Kong, or even some of the legacy steam railways in Britain.

 

Useful Links:

  1. Hong Kong Metro – 40 Years On
  2. Davies and Metcalfe Limited

Screenshot 2020-02-08 at 12.18.55

  1. Davies & Metcalfe (Wikipedia)
  2. Davies & Metcalfe (Graces Guide)

-oOo-

Hong Kong Metro – 40 Years On

Standard

It was once described as the largest building project in Asia, and it carried its first fare paying passengers on 1 October 1979 when the 8.5km section of the Metro between Kwun Tong and Shek Kip Mei was opened to the public.

Mtrc79It is also 40 years ago this month that another order was placed with Metro-Cammell for the growing Hong Kong MRT, just three years after they were awarded a £35 million order for 140 trains in November 1976. GEC traction and Metro-Cammell’s combined success with the first orders, was followed in November 1979 by another £40 million order for a further 135 multiple unit vehicles for the Kowloon-Canton railway.   This came hard on the heels – just five weeks later – of the order for a further 150
 metro cars worth £50 million for the MTR routes.

Original MRT train - from Railpower 39

Almost straight out of the box. An original Metro-Cammell built MRT train for Hong Kong. Though much changed in appearance, passenger facilities and traction control systems, they are still at work today.

By that time, contracts worth over £100 million for electrical, mechanical and civil engineering work had already been placed with UK engineering firms. The initial multi-contract E11 awarded by the MRTC involved GEC Traction and Metro-Cammell, requiring close co-operation between the three organisations for the supply and installation of the electrical and mechanical equipment.

The first contracts on the Modified Initial System were placed almost ten years after a report on the problems of road traffic congestion was published by the Hong Kong Government. This was aimed at resolving the territory’s transport question further.

Hong Kong MTR MapThe mechanical and electrical contracts placed by the Hong Kong Government for the Modified Initial System (MIS), were awarded against an extremely tight schedule. The first train set was scheduled for delivery in 1979 and the whole 15.6 route km system was planned to open early in 1980.  The MIS for Hong Kong was swiftly followed by the Tsuen Wan extension, with the obvious demand for more rolling stock, and by 1982, GEC Traction had supplied more than 400 sets to the MRT Corporation.

Alongside this, the 34km route of the Kowloon to Lo Wu line was being doubled and electrified at 25kV a.c. using a simple, overhead catenary construction, similar to that used by British Rail in the UK.

In the export market, the Hong Kong MRT was considered the first major project success for GEC Transportation Projects, established as a subsidiary of GEC Traction and based in Manchester, to design and manage such turnkey projects. The Mass Transit system was entirely new, with two lines providing links between the Central District of Hong Kong Island and the business and residential areas of Kowloon. The mass transit railway used an overhead contact system, electrified at 1500Vd.c. It was intended at one time that this line would be
 electrified using a shrouded conductor
 rail, but it was decided that safety
 margins would be improved using 1500Vd.c. catenary. At the same time, two extensions to the MRT were planned 10.6km to Tuen Wan, and the 12.5km Island Line, with completion in 1986.

Kowloon to Canton (Lo Wu)

Work began on the modernisation of the 34km Kowloon-Canton Railway, in early 1980, with the design, installation, supply and commissioning of the overhead equipment awarded to Balfour Beatty Power Construction.

KCR Car as new

The original emu’s for the Kowloon-Canton Railway, built by Metro-Cammell, with GEC Traction power equipment. Initial tests were carried out on the Tyne & Wear Metro in the UK, before being shipped out to Hong Kong.                    Photo: RPB/GEC Traction Collection

Metro-Cammell
 had also signed a contract with the Hong Kong
 Government to supply 135 electric
 multiple unit vehicles, to operate 
inner and outer suburban services on the
 Kowloon Canton Railway, which was being
 modernised and electrified. The fleet of rail
cars, worth £40million, were designed to be operated as
 three-car sets with up to four sets running in 
multiple.

The electrical equipment and traction power infrastructure was again being supplied by GEC Traction, from Preston and Stafford, with the MRT and extension lines electrified at 1500V d.c overhead, and the Kowloon to Canton route at the standard 25kV a.c., overhead.

Rolling stock

The trains for both the
 Mass Transit and Kowloon-Canton 
Railways, were built by Metro-Cammell. The original mass transit cars
 had a very high capacity, with seats 
for 48 passengers, and standing room
 for more than 300, in a length of 22m
and overall width of 3m. At the time, the MRT cars were believed to have the highest capacity of any metro car in the world. With such high density, getting passengers on and off required the provision of five pairs of sliding doors on each side of the car.

GEC Traction Hong Kong BrochureThe cars for
 the Modified Initial System, and Tsuen
Wan Extension were arranged in six-car formations, and due to the demanding operating requirements, all axles were motored, to give a nominal acceleration of 1.3m/s 2. Though this was increased in practice, because many of the stations along the route were constructed on ‘humps’. The MRT cars, ultimately in eight-car formations were required to operate at 90 seconds headway between trains, and a two minute intervals with ATO (Automatic Train Operation) in use.

The body shell was common for the three types of car on the KCR, and similar to that for the Hong Kong Mass Transit cars. They differed largely only because the KCR sets had fewer side doors, and narrower gangways between cars than the MRT vehicles. Electrically the KCR propulsion equipment was almost entirely derived from that supplied to British Rail.

GEC Traction supplied the propulsion equipment, which included conventional, camshaft control systems,· although consideration had been given in the early stages to using more advanced, thyristor chopper control. An important advantage of using chopper control is the system’s ability to regenerate during braking, but the hump layout ofmany ofthe mass transit stations rendered its application less useful. By 1982, Metro-Cammell had received orders for 558 vehicles for the mass transit system, with the final contract covering 22 power and 106 trailer cars for the Island Line extension. A total of 18 powered cars were ordered with thyristor control equipment in later years, in orders worth some £l0m.

In the UK, during the 1970s, the Tyneside Metro was constructed, which proved beneficial for both Metro-Cammell and GEC Traction, since te first Hong Kong MRT cars were sent for trials on the Tyneside Metro’s test track, prior to dispatch to the Far East.

MTR-train

Still recognisable as a Metro-Cammell MTR train, despite the modifications to the front end, as the train enters one of the elevated stations on this hugely busy system.                 Photo: ThomasWu726 – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6005011

The orders for Metro-Cammell and GEC Traction continued to come in during the 1980s, with additional MTR trains for the Island Line extension, and more three-car trains for the KCR. The last order for what was later classed as M-Class trains, were delivered from Metro-Cammell in Birmingham in 1988/89. However, it was not the last order, as in 1992, and order was placed with GEC Althom (who had by then acquired Metro-Cammell), for another 64 cars, for the MRT.
The MIS trains built by Metro-Cammell were – indeed are – classified as “M-Stock” by the MRT in Hong Kong, and they have undergone various improvements and changes. The initial modifications included altering the front end, to “modernise” its appearance, and the fitting of passenger information systems. All of the original builds were fitted with GTO Chopper control between 1992 and 1995.

This final order included an option for 24 further vehicles, and all 88 were supplied to Hong Kong as a set of parts, which were assembled at the Kowloon Bay Depot. Some of these – by now classed as H-Stock – were refurbished for use on Hong Kong’s Disneyland Line.

The original Kowloon-Canton units were designed for longer journeys, and included slightly different layouts or inner and outer suburban trains, but the general construction is similar to the mass transit trains, with main structural profiles common to both designs. In three-car sets – up to four sets could be coupled in multiple to give a 12-car train), the outer suburban sets have a capacity for 884 passengers and 961 for the inner suburban sets. With full width driving cabs at each end, every three-car set is a self-contained unit.

We see climate as a 21st century issue, but of course in tropical, and sub-tropical climates, there has always been the ever present problem of torrential downpours, from storms – be they hurricanes or typhoons, along with dramatic temperature variations. The climate is such in Hong Kong, that the vehicles, and their passengers were expected to withstand extremes of temperature, from 0 to 40 degrees, up to 100% humidity, and even required to run through flood water in some sections, as a result of the impact of Typhoons.

hong_kong_metro

The original Metro-Cammell built KCR trains were refurbished in the late 1990s by Alstom. This view taken in the Hong Kong Kowloon Bay Depot workshops shows work being carried out.      Photo: Alstom/RPB Collection

These trains are still in service today, but have undergone a number of changes, and the original Hong Kong MTR and Kowloon-Canton Railways have seen considerable changes and modifications since the 1980s.  The original KCR trains were converted by Alstom to 12-car sets, and the original 3 sliding doors were increased by the adition of a further 2 doors per side, and an emergency door in each cab front. The cab fronts were also modified, and entirely new passenger information systems were installed – all of this work was carried out between 1996 and 1999, to extend the life of these trains. Further changes included the fitting of ATO/ATC control systems, and today, 20 years later, they are still in use – now classed as Mid-Life Refurbishment Train (MLR).

A196 葵芳南咽喉

A196 entering Kwai Fong Station – March 2019    Photo: N509FZ – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=76984682

So much has changed over the years in Hong Kong, what with the new airport at Chek Lap Kok, and the suspension bridge carrying the metro to the airport, along with further new lines, and a link to the Disney resort. On the railway, several refurbishments of the original M-Trains – which are still running, and the fitting of automatic train Control (ATC), the now almost universal Platform Screen Doors on metros around the world – but the trains from Washwood Heath are still running – for now.

MTR_first_Q-train_in_Qingdao_Sifang_factory_test_track

First of the latest Q-trains that will replace the old Metro-Cammell stock for Hong Kong’s MTR. Here seen at the Qingdao Sifang factory test rack. Photo: Zhongqi Qingdao Sifang Locomotive & Rolling Stock Co., Ltd. – http://www.crrcgc.cc/Portals/36/BatchImagesThumb/2018/0129/636528335151471991.jpg, CC BY-SA 4.0  https://commons.wikimedia.org /w/index.php?curid=81272688

According to reports announced in 2015, the MTR Corporation is to spend HK$6 billion on its largest- ever order of trains from a mainland manufacturer. 93 eight-car trains will replace all of the Metro-Cammell currently operating on the Kwun Tong, Tsuen Wan, Island and Tseung Kwan O lines.

Mainland maker CSR Qingdao Sifang is delivering the trains between 2018 and 2023.

Links:

 

-oOo-

From Preston to Montreal

Standard

The first efforts to electrify the railway in and around the harbour at Montreal in Canada came after 1915, and in part were driven by the British Government’s desire to increase its trade within the empire, and expand and develop resources.  They even set up a Royal Commission to look into how that could be achieved just before the start of the First World War.  One of the commissioners appointed was Sir William Lorimer, Chairman of the North British Locomotive Co., and yet it would be one of his company’s newer competitors who won an order for locomotive power for the Montreal Harbour Commissioners’ impressive project.

In 1915, the Harbour Commissioners had had a report prepared on the benefits of electrifying the railways around Montreal Harbour.  The following year, 1916, in the company’s annual report, they made this statement:

“It was ascertained that, in addition to the primary object of overcoming the smoke nuisance, the application of electricity would prove to be economical and flexible and especially advantageous for the elimination of the corrosion of steel and galvanized iron by acid gases.   Although preparations were made to urge forward the completion of this important work, the Commissioners decided that under existing conditions it would be advisable to postpone the expenditure for this undertaking until after the War.”

The “corrosion of steel and galvanised iron by gases” might well have been an early reference to acid rain.

Prior to the electrification of Montreal Harbour’s lines, the Canadian Northern Railway (CNR) had constructed a new line from the town of Mount Royal, to downtown Montreal, and had also introduced the first main line electrification to Canada.  Mount Royal is a town to the North West of central Montreal, and lies on the north west of the mountain from which it takes its name. In 1910 the CNR first proposed constructing a 5-km-long tunnel under Mount Royal, and developed the town as a “Model City”, originally laid out after the style of Washington, DC.  The line then made a connection with Montreal’s harbour lines, and a new central station was built, with a freight station located near the Lachine Canal and what is now described as Montreal’s old Harbour.  The newly electrified track to downtown Montreal used Bo-Bo electric locos built by General Electric at Schenectady, New York, whilst the Canadian GEC supplied the overhead equipment and power systems.    The point of this first scheme was to handle both suburban and main line trains from the new passenger station in Montreal to the suburban territory beyond Mount Royal, wherethe mainline traffic wastransferred to steam haulage.  

The electrification of the Mount Royal Tunnel section was electrified at 2,400V d.c., completed in September 1918, with the first train running through on 21stOctober that same year.

This period – marked both by enormous growth in freight traffic, and by the collapse of the Canadian Northern Railway (amongst others) – was a very difficult time.  The Federal Government nationalized the railway, and later took on board the Grand Trunk Railway (GTR), alongside others, and by 1923, Canadian National Railways became the major Railway in Canada. 

This photograph originally appeared on the cover of English Electric booklet No. 55 of its ‘Railway Electrification’ series, and published in 1931, shows some indication of the harsh conditions faced by electric traction in Canada.

It is speculation to suggest that this work and the GE built locomotives – which were completed between 1914 and 1918 – encouraged the Montreal Harbour Commissioners to press ahead with their plans to electrify the harbour lines.  It was 7 years later that the Harbour Commissioners were able to complete the electrification of the harbour lines, in 1925, and in order to conform to the standards adopted by CNR for the Mount Royal Tunnel, again, 2400V d.c. was adopted throughout.

However, and perhaps due to British Government influence, the Harbour Commissioners looked to the UK and English Electric for their project.  The Preston based company not only provided the nine, 100 ton locomotives, but also the motor generator sets for the substations that provided the traction power supply.   For the infrastructure work, three 1000kW motor generator sets were supplied to the initial installation, with the last two being manufactured at English Electric’s Stafford Works.  Subsequently, the Harbour Commissioners ordered two more machines from English Electric, each of which consisted of a 2,300kW, 63 cycles, synchronous motor, coupled to a pair of 1200V d.c. generators, connected in series.

The locomotives

No. 103 in original condition, and newly arrived from Preston, prior to embarking on its 70+ years of work in and around Montreal Harbour, and the Mount Royal line.

The new locomotives were a Bo-Bo design of 1720hp, and were supplied against two orders, and at the time, considered to be the most powerful units of their type, anywhere in the world.  The orders were placed in 1923, with the first four locomotives entering service in February 1925, and the second batch of five in operation from August the following year.  The locomotives were built at the Preston Works, and shipped across the Atlantic to Montreal.  In design, the units were a simple box cab layout, with a driving cab at each end, although one of these was provided with projecting lookouts so that the driver could have unobstructed vision during some shunting operations.  The cab with the projecting lookouts had duplicate controls, a further advantage for shunting service, whilst the cab at the opposite end, with only a single set of controls, and no lookouts, would be used predominantly for long haul operations.

Up until the completion of electrification works around the harbour, and arrival of these new locomotives, the Harbour Commissioners had been renting two electric units Canadian National Railways. It was a temporary measure, and to some degree an experiment in the use of electric traction, and the rented locos were from the six boxcab units built at GE’s Schenectady Works.

CNR blueprint diagram of the EE locos for Montreal Harbour. This diagram – also showing the position of the illuminated number board fitted in later years, was originally published in the journal of the Canadian Railroad Historical Society in January 1962.

Power equipment layout consisted of four; 430hp force ventilated traction motors, each being axle hung, and driving the wheels through single reduction spur gearing.   Given the harsh winter conditions in Canada, the traction motors received some interesting design attention.  To avoid condensation in the traction motors in cold weather, after the locomotive had completed its roster, all the field coils were connected in series, and heated through a connection to an external 220V power source.  Not without some irony perhaps, but the UK’s own problems with electric traction some 60 years later surfaced with a newspaper headline about service failures due to the ‘wrong kind of snow’ falling in Britain!  Most European rail networks – especially in Scandinavia – paid far more attention, like Canada, to the effects of freezing weather on traction systems than British Rail.

The locomotives were capable of exerting a tractive effort of 70,000 lbs at the wheel treads, and soon after their introduction, one of their number demonstrated these abilities, by hauling a train of some 5,240 tons, the heaviest then recorded.  Within the body of the locomotive, the remaining equipment was installed in cubicles along either side of a central gangway. This hardware consisted of a motor generator set, air compressors and banks of resistances, with standard English Electric camshaft control.  

With the English Electric version of this form of control, the operating current was not switched at the camshaft itself, but on line breakers, connected in series with the camshaft controller.  Special provision was made for the high-tension equipment, which was housed in a separate compartment, included access through substantial, interlocked, sliding doors, and which could not be opened unless the main switch was closed, isolating the equipment.

In view of the harshness of the Montreal climate in winter, important amongst the numerous design considerations, was the provision of adequate ventilation and heating. Provisions were made to guard against condensation in the traction motor field windings, which could be connected in series to a 220V shore supply, and the driving cabs were double glazed, and heavily insulated against the cold.

Leading Dimensions, Numbering & Withdrawal

For their time and size these were very powerful machines, and the maximum tractive effort they were able to exert was actually a little more than one of English Electric’s most famous diesel locomotive from the 1950s – the 3,300hp “Deltic” prototype.

CN No. 186 with commuter train in Montreal with the running number applied in 1949, and renumbered 6722 after 1969.
Photo © A.J.Schill/Joseph Testagrose Collection

The locomotives were numbered 9180 to 9188 when they were taken into CN service, as Class Z-4-a and renumbered as 180 to 188 in 1949, before a final renumbering in 1969, with numbers 6716 to 6724.  They were finally withdrawn from service in 1995, when carrying this number series.

In the same year, 1923, English Electric also received an order for a pair of 760hp Bo-Bo electric locomotives, for operation on the Niagra-St Catherines-Toronto route, which was electrified at 600V d.c., and used a ‘trolley pole’ form of overhead contact.  The 1920s were perhaps the last decade when electric tramway, inter-urban or other light rail networks used this form of electrification.

The petrol-electric crane/servicing locomotive built and delivered by English Electric in 1929.  Seen here in Preston shortly after completion, and before shipping to Montreal.

The Petrol-Electric Locomotive

Even these were not the only motive power designed and supplied by English Electric for Canada’s early electrification projects. In 1929 the Montreal Harbour Commissioners ordered what was described as a general service locomotive for repair and construction work – this was a 54ton petrol-electric locomotive, fitted with a 100hp 6-cylinder engine.  Attached to this petrol engine was a 52kW, 500 volt main generator and a 120 volt auxiliary generator, powering the traction motors through a 12-notch controller that provided fine control over the loco’s speed, up to a maximum of 12 mph.   Its unique feature – clearly because of its intended use – included a roof mounted jib crane, and a swinging/collapsible gantry, for maintenance and service personnel to reach whatever equipment was in need of attention on the overhead system.

 English Electric received yet another order from Canada – the company’s last, in 1952 – but this time for the Toronto Transit Commission, and perhaps sadly from Preston’s view, the order was only for motorcoach control equipment. That said, the 1952 order consisted of no less than 140 sets of that control equipment, with the mechanical parts and assembly from Canadian Car and Foundry (CC&F), from its factory in Montreal.  Today, CC&F is part of the Bombardier Transportation business, as its railcar facility in Thunder Bay, Ontario.

The original nine locos for Montreal Harbour had a very long service life, and were only withdrawn fully in 1995 – more than 70 years after their delivery and initial operation.  In later years the class ceased working around Montreal Harbour after 1940/41.This extract from a discussion on these locomotives appeared in the January 1962 edition of the newsletter of the Canadian Railroad Historical Society:

“The Montreal Harbour electrification, however, did not prove to be too successful. Technically it was fine but the financial burden was too great and at the close of the 1940 navigation season, electric operations were brought to a halt. During the following months, the National Harbours Board wire crews took down the expensive overhead and dismantled the electrification works. The electric locomotives, however, fitted admirably with the CNR’s need for additional motive power for the National System’s expanding Montreal Terminals electrification. The locomotives, therefore, were transferred to the Canadian National Railways in 1942 in exchange for nine steam-powered 0-6-0 switchers numbered 7512 to 7518 inclusive.”

In its final guise for CN, No. 6716 and a sister locomotive head a commuter service near Mount Royal in July 1983.  Although the headlight is still in the original position, the loco now has an illuminated number board just above the central cab window.
Photo © Clayton Langstaff

The electrification work, and the provision of these new boxcab locomotives was an important milestone for English Electric, and whilst the mechanical parts were sub-contracted to Beyer-Peacock in Manchester, this marked a major success for the company. These first orders for substation power equipment and locomotives were received only 4 years after the company came into existence, brining together the years of experience, and expertise already shown by the Dick, Kerr Co., pushing forward with electric traction. 2019 marks the centenary of what was for half a century perhaps the most famous electrical engineering company in the UK, and it was only just over a year ago that the doors on the factory in Preston, Lancashire were closed for the final time.

-oOo-

Useful Links:

Siemens New Rail Factory in Goole

Standard

The name of Siemens has an exceptionally long history with railway equipment and rolling stock manufacturing in the UK. To be precise since 1864, when the Woolwich factory was established in London, although the company had been set up in London in 1850, and over the next 30 years, William Siemens was responsible for the arrival of electric traction. Amongst many other innovative developments and delivering what we might today call ‘disruptive’ technology.

This week – April 23rd – it was announced that the company had submitted their plans to build a new factory in Goole, East Yorkshire, for the construction, testing and support for new rolling stock for UK train companies. The application is for outline consent to enable the development to be delivered in phases, with the first phase – the manufacturing facilities expected to open in 2023, with the factory fully operational in 2025. The new facility will manufacture and commission the latest development of the “Desiro” family, which itself – in the UK – dates back to 2000, when the first emu’s were ordered for service with First Great Eastern, and owned by Angel Trains.

Goole Infographics V2-02 (002)The new £200 million factory uses land on a 67 acre site, adjacent to the Guardian Industries UK glass factory, and the Goole intermodal rail terminal – a clearly appropriate location from a rail perspective – and is also close to junction 36 of the M62 motorway. The plans submitted include 80,000 sqm of manufacturing, commissioning, warehouse buildings and stabling sidings, as well as a four-storey, 5,000 sqm office building. Siemens Mobility is planning to create up to 700 jobs as part of this project, and 250 during the construction period, with an estimated additional 1,700 in the UK supply chain.

But Siemens Mobility is not just planning to build trains in Goole, as the company’s UK rolling stock engineering and commissioning team will be based here, and is planning to locate its Digital Operations Centre onsite, collecting and analysing train borne data for train operators.

Ntfl-exterior-platform

Artists impression of the new tube rolling stock design Photo: By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=44094899

The driver to carry the proposal forward was of course the £1.5 billion order for new trains for the Piccadilly Line for London Underground. The Piccadilly Line had the distinction at one time of being London’s longest tube line, and is now 113 years old. Under the Deep Tube Upgrade Programme, Siemens Mobility Ltd’s contract will supply 94 small-profile metro trainsets, following their successful award from the tender process that began in 2016. Siemens’ success was achieved against stiff competition from Alstom, Bombardier, CAF, and Hitachi, and which included three of the companies launching legal challenges that automatically prevented award of the contract. Suspension of the contract award was lifted by the High Court on 2nd November 2018, and the contract placed.

Whilst it is true that Siemens already have a considerable presence in the area, supporting the offshore and renewables industry, manufacturing turbine blades, this new factory is an important step in the re-growth of the UK’s rail manufacturing industry. It is interesting to reflect too that between 1957 and 1972, GEC Traction (later merged with Alsthom), secured orders for 720 sets of motorcoach power equipment for the Piccadilly, and the Heathrow Extension.

Some useful links:

 

-oOo-