Travelling by Rail is Now Fashionable

Standard

There was an advert on TV the other day, encouraging people to use the “National Railway Network”.  Odd, I thought, especially since passenger and freight services are run by private train operators, and pay a fee to Network Rail to use the tracks and infrastructure.  So, what is the purpose?

Well, blindingly obvious – it is to get people back on trains as their use has been drastically cut over the past 18 months by this awful Coronavirus Pandemic. 

National Rail enquiries have always used the old British Rail logo

Great idea – but given that the advertisement is to underpin Network Rail – which does not operate trains – and uses the imagery of British Rail from the 1970s and 80s, and they also use the double arrow logo, that was so closely associated with British Rail.

Before anyone mentions it, yes I do know that Nationalrail.co.uk is an online national timetabling service, and it has been using the double arrow symbol for years:

Selling travelling by train with nostalgia seems to be the subliminal messaging going on here – well not that subliminal if I can spot it!  This is what their ad campaign has been saying:

The latest marketing video aiming to convince people to get back on the trains also includes the old British Rail logo – it bears a remarkable similarity to the approach taken in the 1980s.

Anyway, I thought – indeed was told in no uncertain terms back when British Rail existed – that it was a failure, and privatising it was going to make everything so much better, and it would be profitable.   Well that was a mistake, an error, and misleading wasn’t it.  Since “privatisation” the public purse has been well and truly reduced by subsidising the loss making operators.

Still, the “Rail Delivery Group” – a bit like the old Railway Clearing House, or British Transport Commission of the 1940s and 1950s – appears to believe selling the idea on a “national” basis is the way forward, by going backwards with its message content.

Are they suggesting there is no other way forward than to relaunch British Rail?  Their slogan: ‘Let‘s get back on track‘, was created for Network Rail, which, as we know, does not run trains.  Or is it just that if the train operating companies were to come up with a marketing programme, it would need to involve 2 continents, 5 countries (excluding the UK), and 10 parent companies and more than 20 different operators!  Then, in turn there are the companies that actually own the rolling stock – the ROSCOs – there are 9 of them, and they are owned in turn by groups of banks and financial institutions in Canada, China, Germany, France and Australia.

The table below is just the passenger train operating companies – I think it’s relatively accurate, but I’ve excluded the Channel Tunnel, and Eurostar – neither of which are involved with this exercise – well, so far!

Parent CompanyTrain Operator
AbellioAbellio ScotRail (SR),  East Midlands Railway (EM),  Greater Anglia (GA) (60%),  Merseyrail (ME) (50%),  West Midlands Trains (WM) (70%)
ArrivaArriva Rail London (LO),  Chiltern Railways (CH),  CrossCountry (XC),  Grand Central (GC)
East Japan Railway CompanyWest Midlands Trains (WM) (15%)
Department for TransportLondon North Eastern Railway (GR),  Northern Trains (NR)
FirstGroupAvanti West Coast (VT) (70%),  Great Western Railway (GW),  Hull Trains (HT),  South Western Railway (SW) (70%),  TransPennine Express (TP)
Go-Ahead GroupGovia Thameslink Railway (GN, SN, TL),  Southeastern (SE) (65%)
KeolisGovia Thameslink Railway (GN, SN, TL),  Southeastern (SE) (35%)
MitsuiGreater Anglia (GA) (40%),  West Midlands Trains (WM) (15%)
MTR CorporationSouth Western Railway (SW) (30%),  TfL Rail (XR)
SercoCaledonian Sleeper (CS),  Merseyrail (ME) (50%)
Transport for Wales (Welsh Government)Transport for Wales Rail (AW)
Trenitaliac2c (CC),  Avanti West Coast (VT) (30%)

In the 1980s, British Rail were promoting a range of operational, financial and technology improvements and innovations, and included some quite sophisticated marketing too – but it seems that the benefits of rail are only seen clearly during a time of crisis.  Now, it seems transport is on a crisis of economic, financial and environmental proportions, and encouraging people to return to the train is highlighting the crises we are seeing today.

Back in the 1980s, it was “crowned” by the infamous “Serpell Report”, amongst whose chief proposals was the reduction of the national route mileage from 10,500 miles to an incredible 1,630 miles.  Thankfully this ludicrous report was consigned to the dustbin, despite the political climate encouraging the tarmac lobby with wild and weird ideas about converting rail routes into new roads, with one supporter claiming that railways had been anachronism since the pneumatic tyre was born.

The train that never was – well not until the arrival of the “Pendolino” in 2001, which adopted the same technology.
In the 1980s British Rail had a strategy, but it was undermined and overlooked by the transport politics of the day.

But, whilst that absurd plan did not go ahead, British Rail was left to “wither on the vine” in the 1980s, and a prophetic paragraph in the 1980 Rail Policy document indicated the options for the railway at the crossroads:

“A crucial decision has to be taken soon about the future of British Rail. BR must prepare to take either the path of progress by re-equipment and modernisation, or that of decline through a gradual but deliberate run-down of the system. We cannot continue as we have done in the past. We are reaching the dividing of the ways.”

It is easy to look back and say it couldn’t have been implemented, since the early 1980s – at the heart of BR’s “Corporate Plan 1981-85”, because of the dramatic effects of the economic recession.   As we discovered it was a deliberate run down of the system, and the 1990s privatisation was a straw clutching exercise, which, at the same time, saw the national economy clinging on to old fashioned notions of growth and development.

BR Engineering was at the forefront of adopting computer aided design technology, before it too fell victim of the retrograde steps that privatisation forced on the railway industry.

BR was being marketed on a number of fronts: new technology in train control and signalling, fibre-optic communications, computerised systems, greater electrification, expansion of freight services such as “Speedlink”.  For passengers there was the new High Speed Trains – InterCity 125 – and the prospect of the tilting Advanced Passenger Train (APT) – the latter ironically arriving 20 years later via Fiat in Italy, and Bombardier in Birmingham.

Plans for the Channel Tunnel were in hand in the Corporate Plan, and cost savings by replacing diesel traction with electrification were clearly identified, both for long distance and commuter services.  Dedicated high-speed lines to airports like Gatwick and Stansted, where air traffic was rapidly growing were factored into the mix, and whilst the options for less densely populated rural areas were less successful, efforts were being made to change.

Parcels and newspapers were carried by train over the longer distacnces 30 years ago, whilst now, 1,000s of small vans and lorries hurtling up and down the motorways carry that traffic in an unsustaianble way. Anothjer casualty of the backward steps that were implemented after privatisation.

Sadly, none of this was achieving much positive media coverage – the focus, whether broadcast or newsprint relied heavily on promoting expansion of HGVs, and private cars for long and short journeys – oh yes, and the apocryphal on-board catering of the curly sandwich and pork pie.  No thought whatsoever appeared to be given to the environmental impact – and yet less than a decade earlier, the oil crisis of 1974 – suggested there could be challenges ahead.

And yet, these ads seem to provide the same feel as the “Let’s Get Back on the Train” ideas:

Classic 1980s advert – still reaching to encourage us all to use the profitable InterCity services over those long distances. BR’s long distance services’ profitability helped to reduce the cost to the national budget of a national rail service.
I know not many people would recognise Jackie Stewart and Hattoe Jacques, but replace these two with Lewis Hamilton and Dawn French, and with today’s road traffic congestion, I think Dawn French would complete the journey hours before Lewis Hamilton got as far as paying the London congestion charge.

The latest marketing idea to get people back onto the train is likely to fail – not because people don’t want to – it’s because the pandemic and climate emergency has changed the focus, and perhaps those hoardes of parcel delivery vans are not so sustainable for future generations.

-oOo-

Container Trains

Standard

The heading photo shows DRS 88003 hauling a Daventry to Mossend container train. Photo: NK Ian – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=61767573

How old are container trains in the UK?  Well, it’s not simple answer, although we are all familiar in 2021 with Freightliner trains, and the Eddie Stobart and Tesco container carrying trains.  Of course these are intermodal services nowadays – but there have always been intermodal freight operations on the railway – transferring goods from horses and carts onto goods wagons.  Railway freight traffic was never always about bulk loads of minerals, coal and oil, and it was the wagon load and part load consignments that kick started some interesting developments in British Railways days.

There were numerous methods of providing specialised containers for wagon or van load consignments of goods, whether for household furniture, or bulk transport of engineering components in a lengthy supply chain for manufacturers.

Before Liner Trains

In 1964, BR London Midland Region issued a small glossy booklet, entitled “Freight Handbook”, which, apart from the usual details of goods depot and regional telephone numbers contained brief descriptions of some of the innovations in wagonload and container traffic facilities.  The services include what BR described as “demountable containers” carried on a rail wagon, and transferred to and from road vehicles at the terminals at each end of the journey.  Described as a “door-to-door service” that was being constantly improved and extended, the fact that road transport by the early 1960s was entirely privately owned meant that BR had fewer road vehicles to provide the last lap of the journey.

One of the most blindingly obvious commercial errors to us, looking back from 2021 is that no charge was made for the use of containers “owned by the railway”, but just the contents.  Nobody would make that mistake today – would they?!

BR London Midland offered 12 different types of covered container, and three described as ‘open’.  The covered versions were of either ventilated, refrigerated, and insulated, or just simply a wooden box with doors on, and able to carry 4 to 5 tons.  Some had two compartments and bottom doors, whilst others – for meat traffic – had roof bars and hooks for hanging carcasses.  The handbook actually shows images of what BR called the ‘SW’ type – which was essentially a container on wheels that could hold about 1 ton, and could be loaded onto a rail wagon/van by two men.

Manual handling of some of these containers would clearly have been very hard work, but it was not uncommon activity in the 1960s workplace, and mechanical handling appeared over time to both reduce the physical strain and increase efficient load handling.

A couple of interesting examples are illustrated too of the handling of ‘palletised traffic’, where boxes of baked beans on pallets are then loaded into one of the then new ‘pallet vans’.  Judging by the examples in both BR’s own ‘handbook’ and other publications – “Transport Age” – the railway was responding to changes in traffic types by designing and building bespoke vehicles, from pallet vans to specialist ferry vans.  The latter take us away from container trains a little, but perhaps serves to highlight the challenge the industry faced in competition with road hauliers, and standardisation of containers carried at sea on international journeys.

But the most important development to precede the Liner Train project was the “Condor” service, which carried the existing designs of container – essentially a cut down covered van – on a train of specially designed four-wheeled wagons: “Conflats”.  The train began service in 1959, running from Hendon in North London, to Gushetfaulds in Glasgow, and hauled by a pair of the new Metro-Vick 2-stroke, 1,200hp diesel locos.  From Glasgow to London, the load included manufactured goods from Scotland, and in the reverse direction, imported raw materials were shipped from London’s docks to the factories around Glasgow.  The service was door to door, using British Road Services lorries at either end, and with customers paying £16 or £18 to hire a container to carry their products.

The Condor service was a success, and a second route between Birmingham (Aston) and Glasgow in 1963 – the year of the Beeching Report – but it succumbed in the end to Beeching, although it was also the route operated by the first Liner Train / Freightliner service in 1965.

The Liner Train project 

Ironically too, the BMC and BR operated ‘Charter Trains’ between Cowley, Oxford and Bathgate – on specially designed flat wagons – to transport Morris Minor cars to Scotland, and vans and commercial vehicles from Scotland to England.  A few years later, cars were being transported by road, on transporter lorries in ever greater numbers, and liberalisation of commercial road traffic dealt a bit of a blow to the door-to-door service of the ‘Condor’.

The famous “Liner Trains” proposed by Beeching was really a development of existing modular, palletised, and containerised goods services, which ultimately led to the intermodal and company train services of today.  Amongst many other – some would say disastrous – changes proposed under Beeching some radical proposals around “open goods depots” were put forward.

In Appendix 4 of the Beeching Report, the concept is described specifically as:

“…. A conception of transport based upon joint use of road and rail for door-to-door transport of containerised merchandise, with special purpose, through running, scheduled trains providing the trunk haul.”

So there we have it – what we now call inter-modal services, albeit introduced, or at least considered mainly to reduce the financial burdens of non-train-load goods traffic.  In its original concept, the Liner Train was described as a series of permanently coupled flat wagons, for carrying containers, and running to a schedule that would demand high utilisation of the stock.  Each train would have a gross load of 680 tons, with a 360-ton payload, and running at between 50 and 75 mph.

The traffic itself – given that the early 1960s were the years of huge investment in motorways, and roadbuilding – was optimistically described as goods which would be suitable for rail if the right conditions were met – heavy and full loads, on specific routes at reasonable rates.  Having said that this idea was optimistic, it also has to be said that the report considered that the potential tonnage identified for this service was ‘conservative’ at 93 million tons.  Traffic studies had shown that 16 million tons of freight carried annually on the roads, could transfer to rail on this service.

Between this first mention of “Liner Trains” and their appearance in traffic, the political landscape changed, not to mention the review of the “Beeching Proposals”, which were in full swing by late 1964.  In October that year, the General Election resulted in yet another change, and railway policy was about to change again, but the “Liner Train” / Intermodal concept was still a popular option, although none were at that time in operation.  In December 1964, and in answer to a question raised in Parliament about the delay, the new Transport Minister made this statement:

“The Railways Board hopes to introduce the first experimental liner trains next summer, if early agreement is reached with the unions on the principle of “open” depots. My predecessor approved investment of £6 million for liner trains; of this about £700,000 will be spent in 1964. Investment for 1965 will depend on the date of introduction of the services.”

At the time, the “open” depots referred to were the subject of negotiations on working arrangements with the railway trades unions.  The “Liner Train” proposal was given a boost in this early period, with British Railways and the Post Office’s plans to concentrate the handling of parcels and what they described as “sundries” at a small number of larger centres.  Exactly as the road based parcels delivery companies operate today with their distribution hubs and centres – history repeating itself?

An interesting paragraph in the report about the loss of the traffic in small manufactured components to road hauliers, it states that such traffic would not pay the railway to carry it, yet it is just that type of traffic that is “expected to grow”.  In the next paragraph it states too that there is likely to be a growth in the shipment of containers overseas – classic intermodal from rail to seaport – with containers built to “international standards”.  Each of which has proven an accurate prediction.

By 1967, work had progressed, and was even the subject of a Pathe Newsreel report, as the extract shown in the link describes: https://www.britishpathe.com/video/freight-liner-trains .  That said, the clip only shows the early “Freightliner” liveried stock being loaded onto a ferry for the Dover to Dunkirk service.  Two years earlier, the trials and testing of the liner trains with their new ‘flat cars’ was under way, as the Government had approved the funding, and in a parliamentary debate, this was what one MP commented:

“It seems to me that all those who have studied this matter are satisfied that the liner trains will succeed in attracting a very considerable volume of traffic which is now carried on the roads. They will do so only if new specialised railway vehicles are constructed for the purpose. These vehicles are now being constructed in the railway workshop at Derby, and I do not think this would be a proper time for me to have a review of the whole principle underlying the substitution of the existing stock of vehicles by these new ones.”

The discussion had centred around the obsolescence or otherwise of existing wagon designs, and some people seemed to think that the new liner train vehicles would not be interchangeable with existing types – which was of course the point in many ways.  Other goods traffic was declining, and most of the professional railwaymen, including the NUR, were very supportive of the project were anxious to press ahead.

In 1965, British Railways published a further report on the “Development of Trunk Routes”, looking ahead to the 1980s, and based on existing and forecast rail and road traffic flows.  It was also based on the location of industry – from mining to manufacturing – with the principal traffic centres of London, the West Midlands, Merseyside – Manchester – Hull, and Glasgow and around Newcastle.  But the prospects outlined could not take account of the exploitation of North Sea oil and gas reserves, or the ‘offshoring’ of most of the UK’s manufacturing, and dramatic social and economic changes that began in 1979.  

Huge investments in road transport were ongoing, with enormous expansion of the motorway network, and little if any thought of integration or collaboration.  So, the “Liner Train” concept was largely on the back burner for many years, with limited – if any innovation – in multi or intermodal services, and certainly no consideration of environmental impact.

That argument about “could transfer from road to rail” has featured prominently about rail freight services for over 50 years now, as roadrailer, pocket wagon and piggyback concepts have all come and gone.  But, maybe the intermodal services need to be looked at again now, and mimic some of the networks used by the parcel delivery companies, who themselves seem to follow the old railway marshalling yard (hubs), to regional (distribution centres) and local goods (local depot) depots mechanisms.

Currently there are 11 Freightliner depots – Cardiff, Southampton, London, Felixstowe, Birmingham, Cannock, Doncaster, Liverpool, Manchester, Leeds and Glasgow.  The services are now owned and operated by a company from the USA– Genesee & Wyoming Inc. – with its headquarters in Connecticut, and in 2015 the company purchased the UK’s Freightliner Group Ltd.  This separate business is a mix of the traditional bulk mineral haulage that are traditional railway fodder, and the container traffic that, at least on the surface, shows interaction between carrying goods on a flatbed lorry, and its equivalent on rail. 

The concept of intermodal – from the dockside to a depot has changed – but it appears that the majority of seaborne containers that arrive at ports are still ultimately carried on the roads, to an importer/supplier’s regional hubs and distribution centres.  The lorry’s engines may be more efficient and less polluting than before, but multiple engines are needed to carry 20 or 30 containers on a 100 mile journey from port to inland depot.  The likes of the UK’s major supermarket chain and ‘traditional’ road hauliers do run specialised long-haul trains carrying those seaborne containers, but it may be true to say there is still some way to go before a truly intermodal containerised goods traffic is operated in Britain.

47258 "Forth Ports Tilbury" at Stafford on 24/09/99.                                                            By Steve Jones from Telford, United Kingdom - 47258 at Stafford, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=73194374
47258 “Forth Ports Tilbury” at Stafford on 24/09/99n on a Freightliner service. Photo: Steve Jones CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=73194374

There have been many useful ideas in the past, but none have really got to grips with the obsession of road transport for long distance traffic – and is it really that convenient for business?  

-oOo-

A New Blue Pullman?

Standard

How do you turn an HST into a Blue Pullman?  Well, it seems you repaint power cars 43055 and 43046, together with 7 coaches and a kitchen car (41176, 41108, 41162, 41059, 40801, 41182, 41169 and 44078) in the original ‘Nanking Blue’ livery, and send it off on a number of journeys to mark the 60th anniversary of the arrival of the original ‘Blue Pullman’ in 1960.

The first run was due to take place on Saturday 12th December from St Pancras to Crewe, with fare paying passengers on the restored HST set.

This image immediately below shows the restored set passing Eastleigh Arlington on the 9th December passing Eastleigh working the 5Z44 Eastleigh Arlington to Crewe. 

LSL_Blue_Pullman_43055_&_43046_(50699274803) copy

Photo: CA850 CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=97770261

I have to say, it does look pretty good in its new colours, which enhance the original HST/IC 125 design – but you decide, the image below is of one of the earliest HSTs as they were known.

HST set at speed in Sonning Cutting heading west from Paddington in 1974. Photo: BRB/RPBradley Collection

This is the original ‘Blue Pullman’ set, clean out of Metro-Cammell’s works in Birmingham, albeit minus the Pullman logo on the nose.

Click on the image below to read more about the original ‘Blue Pullman’ sets:

More details about the repainted and restored HST set can be found here:

There are now 13 scheduled trips with the ‘New Midland Pullman’ scheduled for 2021, and 11 of these have already sold out, but detaiuls of the remaining trips for next year can be found here:

Useful Links:

-oOo-

Britain’s Train Hell

Standard

Fascinating story emerging over the past 24 hours or so – about the storage of unused emu’s in places like Crewe, Worksop, Ely and Long Marston, all being covered by the national press, and Channel 4 are broadcasting  a “Dispatches” documentary on the TV today – 16th March.

The “Guardian”‘s take is here:

https://www.theguardian.com/uk-news/2020/mar/16/investigation-reveals-number-of-ghost-trains-lying-idle-in-britain 

I love the idea they are described as “Ghost Trains” – I’ve seen the Arnold Ridley classic film “The Ghost Train” with Arthur Askey.

No – I know if what the media are reporting isn’t funny, but whilst the idea that these old Class 319 units, and former London Undergound cars are being held in storage, and maybe could be used on ‘commuter routes’, these reports need context.  So, if we only have 40% of the network electrified, and major electrification projects have been cancelled, would refurbishing this stock be an important option towards solving the UK’s capacity problem.

Probably not – and in the current Coronavirus crisis this is perhaps less of an issue, but it should further identify problems that underfunding on rail infrastructure has created, and the disastrous approach to rail privatisation the UK has taken.

The storage of these trains and the waste created has been an inevitable outcome of the lack of a co-ordinated transport strategy – or “joined up thinking” as you might say, and the train operating ‘short termism’ of the industry’s approach.

Still looking forward to the Channel 4 documentary to see what Marcus Mayers from Manchester Metropolitan University has uncovered in his investigation.

-oOo-

 

Petrol Electric Railcars

Standard

When researching material for my book on the history of GEC Traction, I came across a description of the “British Westinghouse” petrol-electric railcars, which were of course the design developed for the Great Central Railway, and which took to the rails in 1912. The British Westinghouse Co. became Metropolitan-Vickers, and ultimately part of the GEC Traction empire.

Britisah Westinghouse - cover imageThe development of an effective internal combustion engine had been going on for centuries, but the true petrol engine was ‘invented’ in the later 19th Century, developed from gas engines then in use, but the most successful was of course the engine designed by Nikolaus Otto. This ‘free piston’ design arrived in an 1864 patent, in England, and 12 years later, in 1876, in partnership with Gottlieb Daimler and Wilhelm Maybach, the 4-stroke, compressed charge engine. The 4-stroke arrangement has also been described as the “Otto Cycle”.

Leaving aside the patenting in England of the first 2-stroke internal combustion engine in 1881, the earliest recorded use of the word ‘petrol’ appeared in 1884, when Edward Butler designed and built the first engine to use spark plugs, magneto/ignition coil, and spray jet carburettor. Butler had invented these last essential components of the 4-stroke petrol engine.

Still waiting in the wings was Rudolf Diesel and the compression-ignition engine, but for the years between 1884 and the First World War, petrol-electric transmission was attracting the attention of the transport industry, and especially some railways.

Why petrol-electric, and why railcars?

In essence, the railcar idea had been around since before the turn of the 19th to 20th Century – commonly known as steam railmotors, and were set to work on the railway companies’ lightly loaded, and rural branch lines. The economics of self-propelled rolling stock was all well and good for urban and intra/inter-urban operations had been long proven before the start of the First World War, but of course, these were electrically powered, both overhead and by conductor rails. On top of this, urban and suburban tramways had seen considerable expansion, with the electrical technology and vehicles manufactured by the likes of Dick, Kerr & Co., another GEC Traction business as English Electric in later years.

Acsev14

Railcar n°. 14 of ACsEV (United Arad and Csanád Railway Comapny) in Hungary (since 1919 in Romania). One of the first petrol-electric railcars, which were built since 1903, serially since 1905/6, by Johann Weitzer Company (Arad). The internal combustion engine came from De Dion-Bouton, the electric equipment from Siemens-Schuckert        Photo: Original author unknown – http://villamosok.hu/bhev/jarmuvek/mavatvett/acsev14.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=23108680  

 

Benzin-elektr_Weitzer(DeDion-Bouton)1906

Petrol-electric railcar of ACsEV (Arad & Csanád United Railways), built 1903/1906 ff. by Johann Weitzer AG in Arad with an internaml combustion engine from De Dion-Bouton and electric equipment from Siemens-Schuckert

Overseas railways were more enthusiastic to the development of non-steam motive power, and the British Westinghouse railcar design had been supplied to Hungary, where 16 such vehicles were in service on the Arad to Caanad Railway Co. On top of this another 18 were running on the Ooster Stoomtram Mattschappij in Holland, and smaller numbers of similar types at work in France, Germany and Sweden.

The North East Railway Autocar

Autocar_at_Filey_Station

NER 1903 Autocar at Filey Station Photo: Ken Hoole Study Centre – http://www.electricautocar.co.uk, FAL, https://commons.wikimedia.org/w/index.php?curid=15891980

Back in the UK, the Great Central Railway railcar was not the first – although it was, at that time the biggest – in service in Britain. The honour of being the first non-steam railcar goes to the old North Eastern Railway company, when in 1903 it introduced a pair of what the company described as “autocars”. The idea to look at this form of traction for the NER was said to have been attributed to Vincent Raven, then the railway’s Assistant Chief
 Mechanical Engineer, who was drawn to the technology, and its advantages by expanding use on tramcars and tramways in the early 1900s.

The magazine “Automotor” (now “Commercial Motor”) published an article in 1909 that included this comment on those “autocars”:

“The North-Eastern Railway Company—one of the most progressive in this country—attempted such a solution a few years ago, and, largely owing to the persistence and the considerable genius of the district mechanical engineer, Mr. W. Murray, who had charge of the experiments, a couple of self-contained petrol-electric 50-ton coaches were successfully evolved and were running until quite recently in regular service with every satisfaction. That, however, was a fight against long odds. It was a mistake to attempt to convert heavy bogie passenger coaches of standard design.”

Whilst this was certainly the first such example in regular commercial service, other countries were making much more rapid progress, and by the time this story appeared in the press, Hungarian State Railways had no fewer than 150 petrol-electric railcars in operation. They were, like the NER design, lightweight vehicles, typically weighing a mere 19 tons, with 100hp deDion power technology.

The NER railcar (https://www.lner.info/locos/IC/ner_petrolelectric.php )was initially fitted with an 85hp Napier engine, but this was replaced in 1904 with engines from Wolseley Motors Ltd, initially of 100hp, in a flat four layout. In turn, the petrol engine was connected directly to the main generator from British Westinghouse, which supplied the electrical power to a pair of 64hp d.c. traction motors carried on the bogie under the ‘engine room’.

1904WolseleyFlat4Engine

The Wolseley Motors Flat 4 Engine for NER railcar

The fact that Westinghouse was involved is interesting, and demonstrates perhaps the enthusiasm that some engineers were pressing in the rail industry for non-steam traction, built on the considerable success that Westinghouse, Dick, Kerr and others had gained with tramways. However, it was the lack of enthusiasm and speed of the take-up of electric, or non-steam traction, by the railway companies, and equally in the slow progress of tramway growth in Britain that ultimately led to Westinghouse leaving the market before 1920.

The NER railcars survived in service in North East England, in particular on services to and from Scarborough, Harrogate and Selby until they were withdrawn in 1931. The body of No. 3170 was used as a holiday home at Kirbymoorside until it was rescued by an enthusiast in 2003, and is now fully restored and operational at the Embsay and Bolton Abbey Railway.

Whilst the NER can justly claim to have built the first petrol-electric railcar, with support from British Westinghouse, it wasn’t long before others became interested in the technology. Working with the Great Central Railway, the British Westinghouse Electric & Manufacturing Co., designed and built the company’s first petrol-electric railcar, which took to the rails in 1912. According to the makers, this was a straightforward attempt to overcome some of the drawbacks of steam rail motors in urban and branch line workings.

In their publication of 1912, the company made this florid assertion about the benefits of their new railcar for the Great Central:

“The solution of this problem, offered by the British Westinghouse Electric and Manufacturing Co., Ltd., is the petrol-electric car. All of the disadvantages peculiar to the steam auto-car are done away with, and, at the same time, a great number of the advantages, which result when suburban railway systems are electrified, are also secured. The principal among these advantages are smooth and rapid acceleration and the absence of smoke and dirt.”

It has been stated that Sam Fay, General Manager of the Great Central Railway (GCR), had been impressed by the performance of petrol-electric railcars in Hungary and the rest of Europe, which opened the door to another example of this emerging technology. In this new example, the vehicle was ordered from British Westinghouse, as prime contractor, with the car body built by the United Electric Car Co., in Preston.   The United Electric company’s workshops were just across the road from Dick, Kerr & Co., which later formed the core of English Electric, and the competition for rail traction equipment orders between the Preston and Manchester based companies continued until long after their absorption into GEC Traction.

The GCR – Westinghouse Railcar

This could have been described as the first petrol-electric railcar designed and built by a private company, and sold to a British railway – clearly both the Great Central and British Westinghouse wanted this to be a success that would generate sales. In general layout, this was a saloon coach, fitted with two bogies, one of which carried a pair of dc traction motors.

1912-great-central-railway-petrol-electric-railcarPlan and elevation of railcar

Main Dimensions

Main Dimensions Table

Westinghouse engineThe power unit itself was a six-cylinder 90hp unit, and included 140mm bore x 156mm stroke cylinders, cast as three pairs, and running at 1,150 rpm. The engine was, like any conventional petrol engine, water cooled, and directly coupled to a d.c. generator rated at 60 kW, through a flexible coupling. The whole assembly was then mounted on a ‘bent channel iron bedplate’, making it as compact and rigid as possible. Given that steel was also available, it is a wonder that, given this new technology, a new, stronger material was not used.

Exhaust and engine cooling made use of the car’s roof, where the engine silencer and radiator were mounted.

Westinghouse generator in GCR carThe engine and generator unit was fitted at the leading end of the coach, and as the manufacturer stated: “ … all parts are in easy view and readily accessible for inspection and adjustment.”.   The generator supplied power to a pair of 64hp axle-hung d.c. traction motors carried on the bogie in what became the classic arrangement for diesel electric traction for the following decades. The Westinghouse traction motors were totally to provide protection from dirt and moisture.

Control, unsurprisingly, made use of the company’s standard series-parallel controller, as used on tramcars, and light rail vehicles already in service. The single driver’s handle managed both the excitation of the generator field coils, and the petrol engine speed – and two control positions at either end of the vehicle were provided.   In an early adoption of the “dead man’s device”, if a driver released his hold on the handle, power to the traction motors was automatically cut.

Interior of Westinghouse GCR coachThe coach body was of course built in wood on a metal underframe, with the outside finish being “teak painted, lined with gold”, and the interior in a mixture of polished oak and American ash, all it was stated in accordance with GCR practice.

Operations

On completion, trials took place in and around Manchester, near the British Westinghouse (Metropolitan-Vickers) factory where the railcar was built, and followed by a press trip on 28th March 1912 between Marylebone and South Harrow.   A practice continued to this day, when new trains are delivered, or new technology is deployed.

Much the same as happens today, with new trains, over a century later.

The GCR-Westinghouse railcar has received little attention in the press, and in the first couple of years was likely operating some rush hour services out of Marylebone, as London’s suburban empoire grew. By the outbreak of the First World War it was based at Dinting and operated the Glossop branch. By all accounts it was unreliable too, and during severe winter weather, and periods of hard frosts, meant that the radiator had to be drained and emptied each night.

Following the end of the hostilities, the company introduced a new service from Macclesfield Central to Bollington, which later became known as the “Bollington Shuttle”.   This service was begun in August 1921, and the railcar earned the affectionate (?) nickname, the “Bollington Bug”. An interesting photo was published in ‘Cheshire Live” in May 2019, showing the “Bollington Bug” at Macclesfield Station in 1925 (see link below). The railcar continued to operate this service until its final withdrawal on 6th July 1935.

Westinghouse_Petrol-Electric_Railcar_1914_(10467965833) copy

The Westinghouse petrol-electric railcar as supplied to New Zealand in 1914, just a couple of years after the GCR prototype in England.       Photo: Archives New Zealand from New Zealand – Westinghouse Petrol-Electric Railcar 1914, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=51251174

Undeterred, Westinghouse made what it described as ‘tropical versions’ of this design, some of which ended up operating in Australia and New Zealand. In appearance they were the same as the Great Central Railway versions, but with a number of detail differences, as shown in the image below.

Ironically perhaps, the ex-GCR railcar on that service was replaced by a Sentinel steam railcar. Steam and coal were still king in the 1930s, 40s and 50s in the UK, but the inter-war years also saw one or two other diesel powered railcar developments, including on the GWR, and the LMS, where “Bluebird” appeared. But no other petrol-electric railcars appeared in passenger carrying service after these isolated examples.

Useful Links & Further Reading:

 

-oOo-

The Digital Railway – Still On Time?

Standard

Back in the 1990s, Railtrack, and subsequently Network Rail, was charged with implementing the Europe wide signalling and train control system – ERTMS. This included the emerging ETCS (Electronic Train Control System), which was intended to remove the use of optical, lineside signals completely, and use track to train communications through a system of track mounted transmitters/receivers.

But is there more to this digital railway business than simply providing a better train control, management and signalling system?

The UK is still years behind our European neighbours in implementing the ERTMS platforms – although to be fair Railtrack/Network Rail have rolled out the halfway house of Train Protection & Warning System (TPWS), and today the core routes are at the entry level for ETCS. Today’s push for the “Digital Railway” has a lot of chatter, and media speak around improving performance and capacity for economic and commercial growth, but on the technology front, there seems to be some way to go – still.

Back in the late 1990s, the TPWS platform was supposed to have a 15-year lifespan, so is now beyond its final years of scheduled life, alongside the upgraded conventional signalling systems. By 2001 we were implementing systems that conformed to ETCS Level 3, with the Alstom TCS (Train Control System), for the upgrade of the West Coast Main Line (WCML).

There were plans to fit ETCS cab equipment in new stock, but following revisions to Control Period 5 with the ‘Hendy Review’ funding was cut, and the delays in deploying the system could be said to be pushing the UK further behind.

In 2015, the Rail Delivery Group published its 3rd annual “Long Term Passenger Rolling Stock Strategy”, where it stated that:

“During CP5 and CP6, the European Train Control System (ETCS) will be fitted to many fleets
 in preparation for the operation of the European Rail Traffic Management System (ERTMS).”

2015 Rolling Stock StrategyScreenshot 2019-11-21 at 10.51.37

Originally, it was considered that the modular nature of ETCS would be attractive to introduce the technology at Level 1 on secondary routes, interfacing to the existing IECC (Integrated Electronic Control Centres providing automated route setting, amongst other functions), and SSI (Solid State Interlocking) technology. This ability to upgrade in a phased manner was and is important to the UK and other rail networks, with open communications interfaces allowing integrated working across Europe.

But has the signalling and train control system finally been implemented to the optimistic plans of 2001, when the WCML upgrade was completed?

Perhaps not, since back in 2010, the Department for Transport (DfT)was working with outside advisers to try and determine the risks and benefits of adopting – at a future date – possible adoption of the European Railway Traffic Management System (ERTMS/ETCS) Level 3. This report came to the obvious conclusion that it was necessary, desirable, cost effective and efficient – but that was almost a decade ago.

Towards the end of 2016, and although the Rail Delivery Group, and Network Rail’s initiative for a cross-industry Digital Railway programme was progressing, the Transport Committee in its 7th Report (Rail technology: signalling and traffic management) showed that there was still much discussion on the topic:

Their conclusion:

We conclude that improvements to signalling and traffic management technology are needed to deliver a world-class rail network in the UK. In principle we support the idea that the deployment of the European Train Control System (ETCS), Traffic Management software and Driver Advisory systems should be accelerated but this should be subject to careful consideration of the Digital Railway business case, clarity about funding, and a clear understanding of how this programme would affect existing plans for work on enhancements and renewals. In particular, Network Rail’s Digital Railway business case should include a full cost/benefit analysis of all potential systems for a particular route, and consult upon it, before finalising its Digital Railway strategy. 

So, the UK’s rail network, its technology and industry does still appear to have some way to go – despite the fitting of ETCS Level 3 technology to the latest rolling stock, and plans for trials on various routes.

That said, the limited trials using Class 155 multiple units and departmental Class 37 diesels in Wales, on the Cambrian line paved the way for the application of ETCS level 2 on the Thameslink route, with GTR Class 700 trains. The trains began operating in August 2016, with a train running from St Pancras to Blackfriars, and having the ATO software overlay installed to allow automated operations. According to some reports this meant the driver would be responsible for supervising operations via instructions and guidance from in-cab screens, as opposed to controlling the train in a more conventional manner.

Currently, under the Control Period (CP) plans for the East Coast and ex-GWR main lines, ETCS will be introduced in phases – but it will take between 2024 and 2049 to complete the work. This is what is on the current plans:

  • CP6 (by 2024) – KX to Crews Hill and Hatfield
  • CP7 (by 2029) – Sandy to Peterborough; Grantham to Retford and Plymouth to Totnes
  • CP8 (by 2034) – Peterborough to Grantham; York (North) to Northallerton; Ferryhill to Alnmouth, and Paddington to Slough and Heathrow; Totnes to Exeter
  • CP9 (by 2039) – Retford to York (North); Northallerton to Ferryhill; Alnmouth to Berwick, along with Wootton Bassett to Exeter via Bristol, and Pewsey to Cogload Junction
  • CP10 (by 2044) – Didcot area (Cholsey to Wantage Road); Didcot to Oxford and Honeybourne
  • CP11 (by 2049) – Reading area (Slough to Cholsey); Wantage Road to Wootton Bassett; Reading to Pewsey

But no work will be undertaken on the ECML for Control Periods 10 and 11 – well at least that’s the current position, I think.

Thameslink trains now operate with ETCS Level2, with ATO in the central section, which puts that route at the forefront of implementing ATO with ERTMS, operating the new Class 700 Siemens “Desiro City” multiple units. These were procured under a PFI arrangement from 2013, from a consortium of Cross London Trains Ltd, which included Siemens Project Ventures GmbH, Innisfree Ltd., and 3i Infrastructure Ltd., and the trains began operating in 2016.  They were either 8 or 12-car units, and were later supplemented with an order for another 25 6-car trains – the Class 717 units, that would be used on the Great Northern line. In the end these new trains replaced no fewer than 6 older designs, from the Class 319 to Class 466.

Currently the only other ETCS Level 2 equipped and – well almost operational – trains are the Class 345 9-car trains for the Crossrail line. These actually began running in June 2017, and used at the outer ends, on the Great Eastern and Great Western main lines, as ETCS implementation is completed. In the Crossrail case, the trains are based on Bombardier’s “Aventra” design, but, unlike Thameslink, they are equipped for 25kV a.c. operation only, with no 3rd rail contact shoe. The Crossrail trains also carry equipment that allow them to use the TPWS warning system devised as a ‘halfway house’ towards ETCS in the 1990s.

Back in 2018, the DfT produced an 8-page implementation plan/technical spec for interoperability – the Control, Command System (CCS), under the slogan “Moving Britain Ahead”. On Page 4 of that document it states that the “Class B System”, which is the old “Halfway House” platform of TPWS from the late 1990s is supported by an industry wide spec. It also states that migration to ETCS will be on a “business led” basis, and implies that the “Class B System” will continue to be used in the UK.

“This specification defines all the required functionality and performance in a way which does not constrain the market to any particular supplier.” 


When ETCS was being promoted in the late 1990s/early 2000s, and when it was to be rolled out on the West Coast Main Line, in a phased manner, there were still multiple suppliers of ETCS equipment – whether for Level 1, 2 or 3. Not sure that still holds, but certainly the technology has progressed – perhaps the primary objection to speeding up its rollout is the rolling stock problem, and retrofitting to the large fleet of older vehicles. It’s great that it has been implemented for Thameslink, and there are still plans to implement – but TPWS was only intended to have a 15 year lifespan in 1999.

Following a review in 1999 of Railtrack’s West Coast upgrade, the approach to implementing train control through an ETCS platform was not progressed in the original manner, and it was recommended a more piecemeal approach, as an overlay to existing systems was taken. That is one of the ways in which ETCS can be implemented, with no need for a ‘big bang’ approach, and all that that would involve both technically, operationally, and S&T and driver training.

So, you might say, the UK’s “Digital Railway” is getting there, to misquote an old British Rail advertising slogan – but it will be sometime yet, before that objective is realised. In truth, some of us may not even be here to see that…… ah well.

-oOo-

TPWS

TPWS Feature coverClick on the image opposite, which will take you to a short feature written in 2001 about the implementation of TPWS – the UK’s initial step towards a full ERTMS/ATP train control system.

 

 

More Useful Links:

 

 

 

British Rail – InterCity Catering

Standard

I have travelled on the West Coast Main Line in Britain for many years, from the days of steam, to the days of the Pendolino, and it seems to me all that the general public are fed is a diet of stories about the curly sandwich. This seemed especially true of the nationalised network.

Inter City Press Release Images March 1993 1The last time I made a journey by a main line service, all that seemed to be on offer was a vending machine, several varieties of crisp, bread rolls, burgers and a coffee from an automated dispensing device. Fast food seems to have taken a stranglehold on train travel in the 21st Century.

Well clearly that’s not much better than the impression that the nationalised system was offering nothing more than a dried up sandwich, and watery tea – or coffee.

Inter City Press Release Images March 1993Back in the later British Rail years, where InterCity was making a profit, the food offering could be quite impressive too. In fact, under BR’s Sectorisation – InterCity was set up in 1987, and made an operating profit of £57 million in its first year, £56 million in 1989, and £49 million in 1990. That despite a cut by the Government of 29% in the passenger grant for rail operations. (Yes, I know it covered other BR sectors, but it would have been impacted.)

In the Spring of 1993, under the custodianship of Chris Green, BR InterCity embarked on a marketing campaign, following a successful introduction in 1992 of what were described as “Express Diner light menus”. This resulted in a 20% increase in the demand for restaurant car meals, and in 1993 more innovation was introduced, including the “Great British Afternoon Tea”

The “Express Diner” menu had a wider choice of meals, including: Rack of Ribs with Barbecue Sauce, Cumberland Sausage and Mash, and Steak and Kidney Pudding alongside existing items such as Fish and Chips and Rib 
Steak. They also went on to include innovations as Chicken Tikka Masala, Beef Stew and Dumplings and Thai-style vegetables with rice
, Jacket Potatoes and even Pizza. (Obviously a novelty in the 1990s!) Oh, yes, and of course a selection of reasonably priced wines was available for lunch and dinner.

Now I’m not suggesting that they were all a great success – but considering the sector’s profitability as a nationalized enterprise, they were giving it a go. At the same time this was happening, of course the 1991 EU Directive about separating infrastructure from operations was being put in place, and the next few years became chaotic, and these innovations dried up.

Mark III Coach Interiors – 1980s

Mk III Coach interior

A nice spacious interior in the Mark III coaches from the late 1980s – in this case a First Class Open.

Mk IIIb 1st open Coach interior with telephone

Another generation of the Mark III design was – unsurprisingly the Mark IIIb, but in this example a First Open with an on board telephone. After your meal, why not make a phone call from the train – so long as you had cash or a phone card in 1986 you could.

Today’s fare is a staggering list of coffees – or at least, various ways of serving coffee – together wraps, bagels, burgers and ciabatta rolls, along with a range of wines, beers and spirits, and even porridge. But that’s in the on-board shop section, alongside the usual vending machines. The only way to get a meal served at a table is in first class though, and only on certain trains – and the menu, like our tastes may have changed – and now includes such as mushrooms in a pastry case with butternut squash.

Not something that was common 20 years ago – but then neither were the veggie and deli specials. Even first class travel on some trains does not mean you get a meal, it may be just wraps, sandwiches or rolls for lunch, or perhaps grilled salmon, beef and potato pie, or salad for an evening repast.

Train Innovations Too

But the on-board food and menu changes were not the only improvements to be planned for the early 90s, in BR days. The existing HST sets and coaches were goiung to be fitted with a range of facilities, many of which we take for granted today. This is what was planned in 1993 – 26 YEARS AGO! :-

  • Audio entertainment system with a selection of CD and FM radio channels available at seat.
  • Electronic seat reservation information on luggage racks and new information displays (including time and journey information using a satellite-based system).
  • Improved toilets with new vanity units and lighting.
  • Brighter entrances to provide a better, warmer welcome for customers.
  • Improved tables, seat access and luggage storage.

Inter City Press Release Images March 1993 3Changes to the internal layout of the coaches was intended to break the saloon into smaller areas, with the Senior Conductor’s office located in the centre of 
the train; near the buffet and accommodation for the disabled, for better customer accessibility.

Clearly some of these were incorporated into the Pendolino trains in later years – some 10 years after BR had planned to introduce them.

Interior of Virgin Voyager - Milepost 92 and half

Not long after the 1993 innovations, along came the likes of the Pendolino and Voyager fixed formation trains from Bombardier and other makers, and hey presto, the above seat reservation details appeared – and of course in-coach entertainment.

When all is said and done though, it has always been unfair to cast aspersions at the state of the on-board catering on British Rail, as undoubtedly, there are occasions when even 20 odd years later, there are no doubt examples of failures. It is not nationalised rail system that was the cause of these issues, but maybe it was us – our changing tastes in food and service.

Inter City Press Release Images March 1993 4

Maybe the initiatives were from BR’s InterCity Sector, but we just took a different path to get there. At least that sector was profitable – but then, maybe there is another story there too.

 

 

 

The whole idea behind this marketing campaign was to persuade travellers not to do this:

Inter City Press Release Images March 1993 2

-oOo-

Useful Links:

Intercity Rail in Britain a Landmark Paper-25-years-on/

 

Hong Kong Metro – 40 Years On

Standard

It was once described as the largest building project in Asia, and it carried its first fare paying passengers on 1 October 1979 when the 8.5km section of the Metro between Kwun Tong and Shek Kip Mei was opened to the public.

Mtrc79It is also 40 years ago this month that another order was placed with Metro-Cammell for the growing Hong Kong MRT, just three years after they were awarded a £35 million order for 140 trains in November 1976. GEC traction and Metro-Cammell’s combined success with the first orders, was followed in November 1979 by another £40 million order for a further 135 multiple unit vehicles for the Kowloon-Canton railway.   This came hard on the heels – just five weeks later – of the order for a further 150
 metro cars worth £50 million for the MTR routes.

Original MRT train - from Railpower 39

Almost straight out of the box. An original Metro-Cammell built MRT train for Hong Kong. Though much changed in appearance, passenger facilities and traction control systems, they are still at work today.

By that time, contracts worth over £100 million for electrical, mechanical and civil engineering work had already been placed with UK engineering firms. The initial multi-contract E11 awarded by the MRTC involved GEC Traction and Metro-Cammell, requiring close co-operation between the three organisations for the supply and installation of the electrical and mechanical equipment.

The first contracts on the Modified Initial System were placed almost ten years after a report on the problems of road traffic congestion was published by the Hong Kong Government. This was aimed at resolving the territory’s transport question further.

Hong Kong MTR MapThe mechanical and electrical contracts placed by the Hong Kong Government for the Modified Initial System (MIS), were awarded against an extremely tight schedule. The first train set was scheduled for delivery in 1979 and the whole 15.6 route km system was planned to open early in 1980.  The MIS for Hong Kong was swiftly followed by the Tsuen Wan extension, with the obvious demand for more rolling stock, and by 1982, GEC Traction had supplied more than 400 sets to the MRT Corporation.

Alongside this, the 34km route of the Kowloon to Lo Wu line was being doubled and electrified at 25kV a.c. using a simple, overhead catenary construction, similar to that used by British Rail in the UK.

In the export market, the Hong Kong MRT was considered the first major project success for GEC Transportation Projects, established as a subsidiary of GEC Traction and based in Manchester, to design and manage such turnkey projects. The Mass Transit system was entirely new, with two lines providing links between the Central District of Hong Kong Island and the business and residential areas of Kowloon. The mass transit railway used an overhead contact system, electrified at 1500Vd.c. It was intended at one time that this line would be
 electrified using a shrouded conductor
 rail, but it was decided that safety
 margins would be improved using 1500Vd.c. catenary. At the same time, two extensions to the MRT were planned 10.6km to Tuen Wan, and the 12.5km Island Line, with completion in 1986.

Kowloon to Canton (Lo Wu)

Work began on the modernisation of the 34km Kowloon-Canton Railway, in early 1980, with the design, installation, supply and commissioning of the overhead equipment awarded to Balfour Beatty Power Construction.

KCR Car as new

The original emu’s for the Kowloon-Canton Railway, built by Metro-Cammell, with GEC Traction power equipment. Initial tests were carried out on the Tyne & Wear Metro in the UK, before being shipped out to Hong Kong.                    Photo: RPB/GEC Traction Collection

Metro-Cammell
 had also signed a contract with the Hong Kong
 Government to supply 135 electric
 multiple unit vehicles, to operate 
inner and outer suburban services on the
 Kowloon Canton Railway, which was being
 modernised and electrified. The fleet of rail
cars, worth £40million, were designed to be operated as
 three-car sets with up to four sets running in 
multiple.

The electrical equipment and traction power infrastructure was again being supplied by GEC Traction, from Preston and Stafford, with the MRT and extension lines electrified at 1500V d.c overhead, and the Kowloon to Canton route at the standard 25kV a.c., overhead.

Rolling stock

The trains for both the
 Mass Transit and Kowloon-Canton 
Railways, were built by Metro-Cammell. The original mass transit cars
 had a very high capacity, with seats 
for 48 passengers, and standing room
 for more than 300, in a length of 22m
and overall width of 3m. At the time, the MRT cars were believed to have the highest capacity of any metro car in the world. With such high density, getting passengers on and off required the provision of five pairs of sliding doors on each side of the car.

GEC Traction Hong Kong BrochureThe cars for
 the Modified Initial System, and Tsuen
Wan Extension were arranged in six-car formations, and due to the demanding operating requirements, all axles were motored, to give a nominal acceleration of 1.3m/s 2. Though this was increased in practice, because many of the stations along the route were constructed on ‘humps’. The MRT cars, ultimately in eight-car formations were required to operate at 90 seconds headway between trains, and a two minute intervals with ATO (Automatic Train Operation) in use.

The body shell was common for the three types of car on the KCR, and similar to that for the Hong Kong Mass Transit cars. They differed largely only because the KCR sets had fewer side doors, and narrower gangways between cars than the MRT vehicles. Electrically the KCR propulsion equipment was almost entirely derived from that supplied to British Rail.

GEC Traction supplied the propulsion equipment, which included conventional, camshaft control systems,· although consideration had been given in the early stages to using more advanced, thyristor chopper control. An important advantage of using chopper control is the system’s ability to regenerate during braking, but the hump layout ofmany ofthe mass transit stations rendered its application less useful. By 1982, Metro-Cammell had received orders for 558 vehicles for the mass transit system, with the final contract covering 22 power and 106 trailer cars for the Island Line extension. A total of 18 powered cars were ordered with thyristor control equipment in later years, in orders worth some £l0m.

In the UK, during the 1970s, the Tyneside Metro was constructed, which proved beneficial for both Metro-Cammell and GEC Traction, since te first Hong Kong MRT cars were sent for trials on the Tyneside Metro’s test track, prior to dispatch to the Far East.

MTR-train

Still recognisable as a Metro-Cammell MTR train, despite the modifications to the front end, as the train enters one of the elevated stations on this hugely busy system.                 Photo: ThomasWu726 – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6005011

The orders for Metro-Cammell and GEC Traction continued to come in during the 1980s, with additional MTR trains for the Island Line extension, and more three-car trains for the KCR. The last order for what was later classed as M-Class trains, were delivered from Metro-Cammell in Birmingham in 1988/89. However, it was not the last order, as in 1992, and order was placed with GEC Althom (who had by then acquired Metro-Cammell), for another 64 cars, for the MRT.
The MIS trains built by Metro-Cammell were – indeed are – classified as “M-Stock” by the MRT in Hong Kong, and they have undergone various improvements and changes. The initial modifications included altering the front end, to “modernise” its appearance, and the fitting of passenger information systems. All of the original builds were fitted with GTO Chopper control between 1992 and 1995.

This final order included an option for 24 further vehicles, and all 88 were supplied to Hong Kong as a set of parts, which were assembled at the Kowloon Bay Depot. Some of these – by now classed as H-Stock – were refurbished for use on Hong Kong’s Disneyland Line.

The original Kowloon-Canton units were designed for longer journeys, and included slightly different layouts or inner and outer suburban trains, but the general construction is similar to the mass transit trains, with main structural profiles common to both designs. In three-car sets – up to four sets could be coupled in multiple to give a 12-car train), the outer suburban sets have a capacity for 884 passengers and 961 for the inner suburban sets. With full width driving cabs at each end, every three-car set is a self-contained unit.

We see climate as a 21st century issue, but of course in tropical, and sub-tropical climates, there has always been the ever present problem of torrential downpours, from storms – be they hurricanes or typhoons, along with dramatic temperature variations. The climate is such in Hong Kong, that the vehicles, and their passengers were expected to withstand extremes of temperature, from 0 to 40 degrees, up to 100% humidity, and even required to run through flood water in some sections, as a result of the impact of Typhoons.

hong_kong_metro

The original Metro-Cammell built KCR trains were refurbished in the late 1990s by Alstom. This view taken in the Hong Kong Kowloon Bay Depot workshops shows work being carried out.      Photo: Alstom/RPB Collection

These trains are still in service today, but have undergone a number of changes, and the original Hong Kong MTR and Kowloon-Canton Railways have seen considerable changes and modifications since the 1980s.  The original KCR trains were converted by Alstom to 12-car sets, and the original 3 sliding doors were increased by the adition of a further 2 doors per side, and an emergency door in each cab front. The cab fronts were also modified, and entirely new passenger information systems were installed – all of this work was carried out between 1996 and 1999, to extend the life of these trains. Further changes included the fitting of ATO/ATC control systems, and today, 20 years later, they are still in use – now classed as Mid-Life Refurbishment Train (MLR).

A196 葵芳南咽喉

A196 entering Kwai Fong Station – March 2019    Photo: N509FZ – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=76984682

So much has changed over the years in Hong Kong, what with the new airport at Chek Lap Kok, and the suspension bridge carrying the metro to the airport, along with further new lines, and a link to the Disney resort. On the railway, several refurbishments of the original M-Trains – which are still running, and the fitting of automatic train Control (ATC), the now almost universal Platform Screen Doors on metros around the world – but the trains from Washwood Heath are still running – for now.

MTR_first_Q-train_in_Qingdao_Sifang_factory_test_track

First of the latest Q-trains that will replace the old Metro-Cammell stock for Hong Kong’s MTR. Here seen at the Qingdao Sifang factory test rack. Photo: Zhongqi Qingdao Sifang Locomotive & Rolling Stock Co., Ltd. – http://www.crrcgc.cc/Portals/36/BatchImagesThumb/2018/0129/636528335151471991.jpg, CC BY-SA 4.0  https://commons.wikimedia.org /w/index.php?curid=81272688

According to reports announced in 2015, the MTR Corporation is to spend HK$6 billion on its largest- ever order of trains from a mainland manufacturer. 93 eight-car trains will replace all of the Metro-Cammell currently operating on the Kwun Tong, Tsuen Wan, Island and Tseung Kwan O lines.

Mainland maker CSR Qingdao Sifang is delivering the trains between 2018 and 2023.

Links:

 

-oOo-

Class 158 – New Lights for Old

Standard
Upper Image:   A Class 158 twin unit entering Edinburgh Waverley station.

Photo courtesy: Ad Meskens – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29600938

The BREL built “Express Sprinter” dmu’s of 1989-92, constructed at Derby’s Litchurch Lane Works are some 30 years old now, and have been dispersed around the UK through BR’s Regional Railways Sector, to the post-privatisation TOCs.  The 40 two-car sets allocated to Abellio/Scotrail may soon be receiving another minor refurb, with a proposal to fit LED lighting in the driving cabs and saloons – or perhaps not.

LED Procurement Tender Notice extract

Extract from the August 2019 procurement notice for Abellio Scotrail

The successful tenderer was to be retrofit the 40 2-car sets with the fitting – and the ongoing management of these installations, and the original tender was announced in December 2018, then cancelled, and re-posted in July 2019. Both the interior lighting question and these last BR built multiple units have had a bit of a chequered history, and their design has been unkindly referred to in some quarters as a “garden shed” approach. Yet still, after more than three decades of service, they are fulfilling some of the intermediate to long distance passenger train duties – at least in Scotland.

Class 158 in 1990 on Glasgow to EdinburghThe Class 158 “Express Sprinter” were the 3rd gestation of the British Rail “Sprinter” range of 2nd generation dmus. Unlike the earlier “Provincial Sector” designs, these were not designed from either older emu designs, like the ‘Sprinter’ series, but they were driven by the 1980s financial constraints on BR. At the time, between 1989 and 1991, the application of inter-city style seating and layout for these longer distance regional services were still dependent on the first generation dmu’s. These were by this time more than 30 years old, and increasingly unreliable, and the refurbishment programmes of the 1970s really did nothing other than a new paint job, or interiors. Then there was the ongoing cost of asbestos removal from the 1950s designs, which, coupled with the financial strictures and operations in the days of sectorisation in the 1980s, ultimately, led to the building of new multiple units.

The end result was the “Express Sprinter”, built at Derby, to the BREL design, and using the key features of the main line and inter-city rolling stock designs, to meet the increased needs and performance criteria for Provincial Sector. The BREL built 158s were first put to work on the Scotrail Sector, over the time when BREL was being privatised by the government, firstly as BREL Group Ltd under ABB Transportation, and later as Adtranz (ABB-Daimler Benz). Each of which is now consigned to the history books. BREL built 447 vehicles, most as 2-car sets, but with a small number as 3-car, and the last was handed over in 1991.

The idea of this latest modification for Abellio ScotRail Ltd was to gain the benefits from energy saving and an increased lighting lifespan on these trains. The most recent upgrade/refurb of the Scotrail units was carried out at the now closed Springburn Works, then operated by Knorr-Bremse, back in 2015.  The work carried out then included the current ‘Saltire’ livery and modernisation of the interiors with new carpets, surface finishes and toilets.  At the same time, the 137-seat trains were equipped with new CCTV systems and automatic passenger-counting systems.

The 2015 renovation and upgrade/update work was carried out at Springburn under the Railcare banner.

The 2015 renovation and upgrade/update work was carried out at Springburn under the Railcare banner.

So, new lights for old may be seen as another minor, but useful upgrade to this long-lived type of rolling stock.  The technology itself may not seem so new, but ranks up there with proposals some years ago that one single light source could supply – through the use of fibre-optic cable – individual lighting throughout a train.  Gone are the days of 60-watt incandescent bulbs in the centre of the passenger compartment – now departing are the harsh glare of fluorescent tubes, with or without luminaires on the coach ceiling.

Some 17 years ago, I wrote about the advances in lighting technology on stations and on trains, for passenger circulating areas, and for on-board functions.  It was back then when the use of laser-optics was being advanced as the way forward, like this:

The Future is Fibre-Optic

  • A great deal of advancement has been seen recently in the use of fibre-optics for lighting purposes. Unlike conventional lighting, with fibre-optic technology, only the light is transmitted. The principal areas where this technology can be used may be summarised as:

  • Difficult access (lack of height and space)

  • Reduced maintenance (multiple lighting points from one lamp)

  • Where objects may be sensitive to heat and ultra violet rays

  • Regulating light in specific places, with minimum visual intrusion

  • Use of fibre-optic cable in data communications, and indeed for entertainment or decorative purposes is not new, but it is state of the art as far as the specialist railway environment is concerned. In principle, its use is based on light from a single source – probably the most obvious departure from conventional practice – and transmission of light along a group of fibres, with the light emitted in a concentrated beam at the remote end of each fibre. This technology in railway use could lead to the elimination not only of the multiple lamps and luminaires, but also the costs of maintaining illumination at recommended and safe levels – especially on board trains.

  • Applications of this technology for the passenger are perhaps most obvious for such activities as reading. Other uses could benefit the train crews, on the driver’s control desk instrumentation – much like their use in cars today. A major advantage is the fact that no heat is generated at the point of illumination, so perhaps a beneficial application could see its use in areas where light but no heat is needed – fuel tank levels, or similar gauges and indicators in hazardous or hard to reach areas for instance. Alternatively perhaps, a way of providing a light source for CCTV and other monitoring systems regularly used today.

  • Ultimately, the future use of fibre-optics in railway lighting applications looks positive. As the production of second-generation metal halide and micro discharge lamps increases the efficiency of the technology, the future is indeed brighter.

This seemed to be the way forward back at the beginning of the 21st century, and now, approaching ¼ of the century, the use of LED (Light Emitting Diodes), has become the lighting source of choice. In fact, LED tube lighting is an ideal candidate for retrofitting to the good old standard fluorescent tube lighting on trains, with some designs being a simple replacement of the older tubes, using the same fittings. The technology itself is claimed to result in an energy saving of up to 75%, and has been in use with TfL in London for the past couple of years, reducing both energy and maintenance costs.

Shining a light on historical sites too, LED lighting has been installed at Rainhill on Merseyside – so even the location with one of he greatest claims to fame for Victorian ‘new technology’ is now an example in the 21st century – 190 years later. Of course, today everything has to have the adjective “smart” attached to it, and lighting on the railway is no exception, so now we also have ‘smart lighting’ – for which no doubt an ‘app’ will be available – soon?

I started off this little item just thinking about the Class 158 and its new lights, but there is much more to lighting on the rail network today, so we will revisit this story for a more detailed look at the technology shortly. So much for fibre-optic lighting!

Class_158_No_158721_(14802782564)

Class 158 721, awaiting departure from Inverness in “First Scotrail” colours.   Photo: Peter Broster – Class 158 No 158721, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=49576344

-oOo-

 

Deltics in Retrospect – Part 1

Standard

The DeItics, or rather the 22 locomotives originally designated English Electric Type 5 Co-Co diesel-electric, over a working life of more than twenty years became top favourites with all rail enthusiasts as they carried out the express passenger duties on the East Coast Main Line. And yet, initially, the design was not in tended for the Eastern Region at all, but the London Midland. Following the highly successful operation of the prototype Deltic locomotive, on LMR and ER metals, it was decided to place an order with English Electric for a production version. In essence this retained the twin I8-cylinder ‘Deltic’ engines of the prototype in a stretched body, with a number of other detail modifications, providing BR with what was at the time the world’s most powerful single unit diesel locomotive.

Deltic at NRM large_CD040355

The original “Deltic” prototype Photo courtesy Science Museum Group Collection © The Board of Trustees of the Science Museum Descriptions and all other text content are licensed under a https://creativecommons.org/licenses/by/4.0/

The first three production Deltics appeared in March 1961 and were allocated to the Scottish, Eastern and North Eastern Regions respectively. They were numbered D9000-02 in the then current numbering scheme. They were the result of six years running experience with the prototype; which remained the property of English Electric until its withdrawal and preservation in the Science Museum in 1963. The prototype had experienced only minor problems during the 400,000miles it covered in service, almost all of which centred around the Napier ‘Deltic’ engine. It was in this, in fact, that the unique nature of the Deltic locomotive was contained. The power unit was developed from a design prepared for the Admiralty in the early 1950s for its ‘Dark’ class fast patrol boats – a lightweight two-stroke diesel, opposed piston, water cooled engine. The cylinders-eighteen in all – were arranged in banks of six around the three sides of an inverted triangle – hence the Deltic name. Happily, the engines installed in the rail version had a much more successful career than those for the Royal Navy.

Original Deltic in Preston Works

Prototype Deltic in the erecting shop at Preston Works in 1956 – almost complete. © Rodger Bradley/GEC Traction Collection

The genesis of the ‘Deltic’ design was outlined in some draft notes on English Electric’s history prepared for GEC Traction’s publicity department around 1970, and included this summary:

1952

The development of a completely new ultra lightweight high speed 2-stroke diesel engine by D. Napier & Son, initiated an investigation 
into the traction potential of the new engine. In due course emerged the parameters for the design of a revolutionary single-unit diesel-electric locomotive of a power substantially greater than existed at the time (or 
for some years after it’s subsequent introduction).

Alongside the production of well established designs for export the prototype began to take shape, finally going into proving service on the L.M.Region of B.R. in 1956, the most powerful single-unit d.e. loco in the world with the highest power/weight ratio. With 3,300 hp from its two 18-cyl Napier engines, the “Deltic” loco weighed some 108 tons, max. axle loading – 18 tons.

During extensive service trials, speeds of well over 120 mile/hour were reputed to have been reached (unofficially), due, principally to the extremely smooth riding of the loco under which speeds downgrade could build up without the rougher riding more normally associated with speeds around 100 mile/hour at that time.”

The notes went on to highlight the steady development of English Electric’s diesel engines and its rail traction success. The production “Deltic” locomotives went on to become legends on a par, if not exceeding that of the Gresley or Stanier pacific steam locomotives.

Teething troubles in the design were basically the result of its transfer to rail traction use, and for the prototype, in addition to the two engines it carried, no less than three were maintained as spares. This was partly for test purposes, and partly to seek out the cause and cure for major problems of erratic valve operation. On the locomotive, with two engines, should one fail completely, it was still possible to move using only the one remaining engine.

Ironically, the prototype Deltic was withdrawn from service and returned to the Vulcan Foundry in the same month the as the first production units appeared. A piston failure occurred while the locomotive was working a Kings Cross to Doncaster service, which badly damaged one of the engines, and during March, the power plant, train-heating boiler, traction motors and control system was removed. It was planned to scrap the remaining shell, before the proposal to display it in the Science Museum was made – and fortunately this proposal was successful.

Deltic Prototype from Dec 1955 BR LM Region Magazine

The prototype as portrayed in the December 1955 issue of the London Midland Region Magazine – worth noting is the statement at the foot of the caption, stating that it had been built for export.

The table below gives the leading dimensions and other principal details of the 22 Deltic locomotives, in ‘as built’ condition.

Deltic leading dimensions

* Although when introduced, all the Deltics were fitted with both air and vacuum brake equipment, the latter being required since a majority of the passenger stock was still vacuum-fitted. The air brake equipment was for loco use only, and in 1967-8, the entire class was fitted with train air brake equipment.

DE:5001:1

The BR weight diagram of the production series Deltics, in original condition and running order.

Mechanical Details

(1) Power Equipment and Transmission

The two engines fitted into each locomotive were high-speed two-stroke diesels, each of which developed 1,650hp from eighteen cylinders. The design comprised three banks of six cylinders arranged around the sides of an inverted equilateral triangle, with all the piston heads opposite one another. This meant that instead of having the main crankshafts in the conventional position at the base of the engine, they were positioned at the three apexes of the triangle.

Deltic Engine ViewsThis complex construction, as previously mentioned was a development of a design produced by Napier for the Admiralty. In fact, the rail traction version, designated type D18-25 maintained the same size cylinders as some of the more powerful marine types, which in the 1950s had reached outputs exceeding 4000hp. One benefit gained from the triangular arrangement was the almost complete balancing of the reciprocating forces.

The pistons themselves were oil-cooled with an aluminium alloy skirt, and a dished alloy crown, screwed and shrunk onto the skirt. Three separate camshafts were fitted to the outer faces of the crankcases, with the fuel injection pumps mounted on the camshaft casings. Lubrication of the engine was based on a ‘dry sump system’, and all bearings and gears were supplied with oil under pressure.
The engines were constructed from three separate cylinder blocks and crankcases, secured by high tensile steel bolts – a method of construction reckoned to give a very strong and rigid structure. At the generator end of each engine a set of phasing gears was provided to drive a common output shaft. From the phasing gearcase, two flexible shafts passed through the uppermost crankcases to drive a centrifugal, double entry scavenge blower. The 5 1/8 in bore cylinders were fitted with steel ‘wet’ type liners with nine exhaust ports arranged around part of the circumference at one end of the liner, and 14 inlet ports around the full circumference at the opposite end.

Deltic D9001 - Vulcan Works Photo March 1961

D9001 the second of the class seen here fresh from the paint shop at the Vulcan Foundry works in March 1961. Sporting the two-tone-green livery and BR’s lion and wheel crest on the body side, with white-framed cab windows. © RPB/GEC Traction Collection

The generators attached to the output shaft of the phasing gearcase were self-ventilated DC machines, with a continuous rating of 1,650 amps at 660 volts. The phasing gearcase output shaft to which the armatures were attached rotated at 1,125rpm – the speed being stepped down from the crankshaft speed of 1,500 rpm. The auxiliary generators were mounted above the main generators and driven by a take off shaft from the phasing gearcase at 1 2/3 the crankshaft speed. The 110-volt supply was used for excitation of the traction generator field coils, lighting and various ancillary circuits.

With both engines in operation, the load was shared between the auxiliary machines, and the main generators were connected in series to supply the six traction motors. Should one power unit fail, the system was designed to provide full tractive effort, but at only half normal road speed. The six English Electric Type EE 538 traction motors were nose suspended, axle hung machines, driving the respective axles through a pinion mounted on the end of the motor armature shaft, and a gear wheel on the axle. The motors were force ventilated, from blowers mounted in each nose end, and electrically connected as three parallel groups of two motors in series.

In order to improve the speed characteristics over which full locomotive power was available, two stages of traction motor field weakening were provided. Engine cooling was by means of two roof mounted radiator fans, each engine having a pair of fans driven through gearboxes and cardan shafts with universal joints.

(2) Control systems

Control of engine speed was by means of air pressure actuators acting on the spring loading of the engine governors. Excitation of each main generator was altered through the load regulators – multi contact rotary switches. The opening and closing of the contacts was via the engine governor and oil driven vane actuator. This in turn varied the resistance in the main generator field circuit, keeping the respective engine at full load for that specific position of the power handle.

All auxiliary circuits were supplied at 110volts, for the operation of pumps, blowers, compressors, etc. An electrical control cubicle was provided behind each cab bulkhead, and housed all the principal circuit protection devices. General protection devices included automatic correction of wheel slip, which involved a slight reduction in traction motor voltage and application of sand.

This arrangement for controlling wheel slip was also in experimental use in 1961 on the 2000hp English Electric Type 4 No D255.

In the event of high cooling water temperature, or low lubricating oil pressure, the engine affected was shut down automatically. Faults such as these would be indicated on the control desk in the driving cab, together with boiler shut down and general fault lights. The general fault light was linked to secondary fault indication lights in the engine compartment detailing particular faults, such as traction motor blower failure, low water or fuel level. The low fuel level indicator meant that enough fuel for only 50 miles of running remained.

Grey Folder GEC - 1 5

Just a couple of years after the first production locomotives entered service – DP1, the original ‘Deltic’ was presented to Science Museum in September 1963, after 45,000 miles running. This view was taken on the day of the presentation.       (c) GEC Traction / RP Bradley Collection

(3) Bogies, Running Gear -General Constructional Features

The bogie main frames and bolsters were fabricated assemblies with the headstocks riveted to them. The general arrangement was similar to the prototype locomotive, though the wheelbase at13ft 6in, equally divided, was shorter. Underhung equalising beams of forged steel were fixed to stirrups incorporated in the axlebox assembly, with the stirrups and equalising brackets being provided with manganese steel liners. Similarly, liners were fitted to the wearing faces of the roller bearing axlebox guides, bolsters, side bearers and centre pivots. The load was transmitted to the bogie through the bolster side bearers and four nests of coil springs to two spring planks suspended by swing links from the bogie frame. Dampers were fitted between the bolster and spring planks. Four pairs of coil springs distributed the load from the solebar to the equalising beam.

Deltic in build at Vulcan_RPB Collection

A Deltic bogie alongside the body framing for one of the class in build at the Vulcan Foundry works, at Newton-le-Willows. All 22 were built at Vulcan between March 1961 and April 1962.    © RPB/GEC Traction Collection

This design of swing bolster bogie was also fitted to the English Electric Type 3Co-Co locomotives, and in June 1961,fractures were discovered in the transom webs of two locos, and as a result all locos with this type of bogie were withdrawn whilst a modification was made. This involved the provision of thicker gauge steel for the particular component, and no further trouble was experienced from this source on either the Type 3s or the Deltics. An interesting arrangement of ducting for traction motor cooling air was used, involving a flexible connection to two of the motors through the hollow bogie centre via the bolster, with similar ducting and flexible connections to the third motor. Clasp type brake rigging was fitted, and could be operated directly through the driver’s air brake valve, or operation of the vacuum brake on the train would cause a proportional application of the loco’s brakes to be made. In1967-68 all the Deltics were equipped with a train air brake system for working the latest stock, including air conditioning.

The underframe and body framing was designed as a load bearing structure, built up from cold formed steel sections and carried on two centrally positioned longitudinal members, and rolled steel channel solebars. A steel plate decking was welded to the top of the underframe with wells under the engine/generator units. All exterior and interior panelling was welded with joints ground flush. Fibreglass insulation was provided between the bodyside panels and in the cab, reducing noise and temperature variation. A more than usual proportion of fibreglass was used in the Deltics, with sections being adapted for battery and sand boxes, main cable ducts, instrument panels, cab and equipment compartment doors. The underslung fuel and boiler feed water tanks were welded up from light alloy sheet, and carried between the bogies. Water tanks were insulated and fitted with heating coils. A characteristic steam locomotive fitting was also provided on these advanced diesel locomotives – a water pick up scoop for use on troughs fitted between the rails.

Basically, the body could be divided into five compartments, which were as follows: No 1 end cab, engine room, boiler compartment, engine room, No 2 end cab. In front of each cab, a nose compartment housed various items of equipment. At the No 1 end these included two exhausters, CO2 fire extinguishers and a traction motor blower and air filter. The nose end in front of the No 2 cab – in addition to the traction motor blower and fire fighting appliances – also housed a toilet and the air compressor. In each case, in view of the height of the nose, both Driver and Second man’s positions were on a raised platform within the cab proper, which was provided with an access door on either side. Due to the restriction of space caused by the intrusion of part of the control cubicle into the cab, the two outer doors were sliding, whilst the engine room access doors opened into the cab.

The engines were positioned in. the engine compartments so that the generators faced outwards, ie, towards the cab, and separated by the train-heating boiler. This latter occupied a space12ft I Din in length at the mid-point of the locomotive. It was a Spanner ‘Swirlyflow’ Mk II, with a steaming capacity of 15001b/hr.

D9005 - The Prince of Wales's Own Regiment of Yorkshire copy

D9005 ‘The Prince of Wales’s Own Regiment of Yorkshire’ on a typical high-speed service on the East Coast Main Line in the 1960s. The change when compared to later 1970s and 1980s, when HST sets were used, and today, with electrification is quite dramatic.                               © RPB/GEC Traction Collection

Follow this link for Part 2 – Build & Operations

Further reading & Useful Links:

British_Rail_Class_55  (Wikipedia)

The Deltic Locomotives of British Rail – Brian Webb.  Pub. David & Charles 1982; ISBN 0-7153-8110-5

 

IMG_9395
The Deltic Preservation Society  Screenshot 2019-09-26 at 15.46.24

 

 

-oOo-