Changing Face of Amtrak’s North East Corridor – and a New Acela

Standard

Beginnings

The North East Corridor of the Amtrak rail network has been, and remains, the most important rail route in the USA, connecting the major cities of the Eastern Seaboard with the federal capital of Washington D.C. It has been at the forefront of the deployment of high-speed trains for decades, way back to the days of the Pennsylvania Railroad’s grand electrification work, and the use of the world famous GG1 locomotives, with Raymond Loewy’s streamlining.

When Amtrak – more precisely the National Railroad Passenger Corporation in 1971, under the ‘Railpax Act’, passenger rail services were and had been run down to a very considerable extent, and the Federal Government decided it was important to rescue the most important routes. Of greatest importance were the lines in the North East States, and the infrastructure was just not fit to provide late 20th century passenger services, and so began the NECIP – North East Corridor Improvement Project.

Back in the 1980s, high-speed rail was dominating the headlines, and by 1986, the USA had experimented with, and was developing that membership of the high-speed club, and only the UK, despite the technology, research and the ill-fated APT, was being left behind. In the USA had had in mind high-speed rail transport since 1965, when it enacted the “High Speed Ground Transportation Act” in 1965, which was a direct response to the arrival of the ‘Shinkansen’ bullet trains in Japan the previous year. There followed trials of ingenious gas-turbine trains from the United Aircraft Corporation – the UAC Turbotrains – which were in revenue earning service on NEC services between 1968 and 1976. These overlapped the formation of Amtrak, and ran in Amtrak colours for a time.

A less than successful gas turbine powered train intended to provide high-speed passenger services was the UAC Turbotrain, seen here at Providence, Rhode Island in May 1974, in the early Amtrak colours. Photo: Hikki Nagasaki – TrainWeb https://commons.wikimedia.org/w/index.php?curid=48607485
Just prior to the creation of Amtrak, Budd built these ‘Metroliner’ sets to try and improve passenger ridership on the NEC. These Penn Central liveried units were perhaps the start of a transition to high-speed rail. Photo (c) Charly’s Slides

To provide improved passenger services on the NEC, in the late 1960s, Penn Central ordered and operated the Budd built “Metroliner” trains for its electrified route out of New York. These trains were sponsored by the DOT (Department of Transportation) as a “Demo Service” for high-speed inter-city working along the corridor. They were a success and led, a few later to the appearance and styling of the first “Amfleet” cars.

But, next on the high-speed agenda were the ANF-RTG “Turbotrains”, which, once again, were powered by gas turbines, with the first two fixed formation sets built and imported from France from 1973. However, these were not set to work on the NEC initially, but sent out to Chicago, where they worked services to and from the mid-west. They were based on a very successful design running on SNCF metals in France, and whilst the first 4 were direct imports, Amtrak “Americanised” the design with another 7 of the 5-car sets, to be built by Rohr Industries, and powered by the same ANF-Frangeco gas turbine. These Turbo Trains were put to use on the “Water Level Route” out of New York, and were fitted with contact shoes for 3-rail working in and out of Grand Central Terminal. These were a success – if not super fast, they were very economical, and cut oil consumption compared to the earlier designs by about 1/3.

The first venture overseas to finmd a high-speed solution for non-electrified routes around and feeding into the NEC was the ANF-Frangeco gas tubine powered sets from France. They were much more reliable and economic operationally than the UAC Turbotrains, and resulted in a design involving this proven technology, but built and ‘Americanised’ by Rohr Industries. Photo: (c) Charly’s Slides

South of New York, the Pennsylvania Railroad had electrified its main line into and out of New York back in the 1930s – and of course bought the unique and classic GG1 electric locomotives. These hauled the most prestigious passenger trains on the Pennsylvania’s lines for many years, but the dramatic collapse in passenger operations in the 1950s and 60s was a major challenge. Railroads were going bust at a rate of knots, and there were mergers that perhaps shouldn’t have been, and with railroads focussing on freight, the track and infrastructure was not good enough for high-speed passenger trains. The Government decided that something needed to be done to protect and provide passenger services in the North East, and following the examples of other countries, provide high-speed services.

The end result was the North East Corridor Improvement Project, and of course the formation of Amtrak.

First Steps

Having taken on the PRR’s ‘Metroliner’ and GG1 for passenger duties under the wires, it was time to look for replacement and improvements. The first changes came by way of 6,000hp E60CP electric locomotives from General Electric, and to marry up with the ageing passenger cars, these Head End Power (HEP) units also had steam heating fitted. Mind you, so did some of the new ‘Amfleet’ cars that were converted to provide HEP in the early days.

On the electrified lines of the former PRR in the NEC, General Electric were commissioned to build these hge 6,000hp E60CP locomotives, which were planned to provide 120 mph running. Sadly, that objective was never achieved, and the power to weight ratio in the build of these locos was a factor. Photo: Amtrak

The E60s were not a success, and their planned operational speeds of up to 120 mph was never achieved, and in part due to the suspension and transmission arrangements, together with the less than satisfactory state of the infrastructure. The E60s had their speed limits capped at 85 mph, even after suspension design changes, and were later sold off to other railroads. High-speed passenger working was not something the American railroads and the NEC in particular had any great experience with at that time, and it was playing catch up with other countries. The next high-speed proposal out of the blocks was much more successful, as Amtrak turned to Sweden and a version of its 6,000hp Bo-Bo locomotive, which, built by General Motors in the USA was nicknamed ‘Mighty Mouse’.

An AEM7 “Mighty Mouse” built by General Motors – also offered 6,000hp but with a much greater power to weight ratio. The design was based on the Swedish ASEA Rc4, and was an outstanding success, and paved the way for further developments of high-speed rail on the NEC. Photo: (c) Rail Photos Unlimited

The imported trial locomotive was the ASEA built Rc4, and was half the weight of the General Electric E60, and more aerodynamic. It was an outstanding success on trial, and despite GE being the only US manufacture of electric locos at that time, its rival, General Motors, was licensed to built ASEA equipment, which of course made it so much simpler to introduce a modern, high-speed design to the corridor. After trials, Amtrak ordered 15 of the new AEM7 ‘Mighty Mouse’ locos from General Motors, and this was rapidly followed by another 32, bringing the class total to 47. It would be wrong to suggest they ‘revolutionised’ high-speed rail in the Northeast Corridor – but they certainly paved the way for future successes – after the $multi-million NEC Improvement Project got under way.

The fixed formation sets of the ‘Metroliner’ fleet in Amtrak service on the NEC as a high-speed option dates back to 1971, when the DOT reported its preference for IHSR-1 (Improved High-Speed Rail), with the ‘Metroliners’ as the minimum investment. These self-propelled electric trains were not a great success, and were plagued with reliability problems, and even after refurbishing in the early 1970s they proved no better than the electric locos hauling the new ‘Amfleet’ cars along the corridor.

Since electrification at the time was not being progressed further – although obscure ideas such as underground tubes, STOL/VTOL aircraft and magnetic levitation systems were discussed as high-speed options – on the rail, more gas-turbine powered trains were tried. This time, the options came from France and Canada – the old UAC ‘Turbotrains’ were very heavy on fuel, alongside their perhaps questionable performance on non-electrified section.

Following the success of the French built Turbotrains, Amtrak ordered and Rohr Industries built these ‘Americanised’ versions, incoporating the technology in a style and configuration more in tune with North American design. These 5-car sets were a success on non-electrified routes feeding into the corridor, and went ‘on tour’ across the country, operating out of the mid-west. Photo: Amtrak

The new gas-turbine trials featured a French multiple unit design from ANF-Frangeco, which was already in regular use on SNCF. The two on lease from ANF were followed by an order for 4 more, and they were highly successful on mid-west routes out of Chicago, with their turbines driving the axles through mechanical cardan shaft drives. An option for more was taken up by building an ‘Americanised’ version at Rohr Industries in California – these were 5-car sets, ordered in 1974 and put to work in the mid-west, whilst the UAC ‘Turbotrains’ saw out their days on the NEC between New York and Boston. The new Rohr turbotrains were also intended for the ‘Water Level Route’ north from New York, and modifications included fitting traction motors and third rail collector shoe gear for working in and out of Grand Central Station.

Amtrak turned to Canada and Bombardier for another variant for non-electrified operations – in this casze, the Bombardier built LRC (‘Light, Rapid, Comfortable’) train, which also saw the first use of body tilting technology to enable higher speeds around curves. Here, Amtrak’s “Beacon Hill” with locomotive #38, is seen in December 1980 carrying the then current red, white and blue livery. Photo: Tim Darnell Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=15751992

The poor old UAC ‘Turbotrains’ were a failure on the New York to Boston section, and the decision to scrap the extension of electrification north from New Haven left Amtrak without suitable power to run high-speed passenger services. In 1980, a pair of 5-car LRC (Light, Rapid Comfortable) trains appeared on the corridor. These were an existing design from Canadian builders Bombardier/MLW, and already in service with Via Rail, and featured automatic body tilt mechanism that would prove a useful benefit for Amtrak. In fact, the Corporation had been considering this option for Vancouver-Seattle-Portland run, but first set them to work on the northern end of the NEC between New Haven and Boston. They were initially restricted to 90 mph, but on test demonstrated that a curve previously restricted to 50 mph could safely be taken at 70 mph – a major improvement in journey times was clearly possible.

Sadly the LRC sets were returned to Canada at the end of the trial period, as Amtrak once again came up against its perpetual enemy – budget and funding constraints.

Today

So where is the Corporation today? Well, it has genuinely embarked and delivered on a high-speed rail offering for the Northeast Corridor, with over 700 miles of track, serving the most densely populated part of the country, and now has genuine high-speed trains and technology. But it took almost 20 years to deliver the first of the fixed formation train sets.

Once again, Amtrak turned to European expertise to test and determine what was the most suitable offering, and following on from the experience gained with the successful ‘Mighty Mouse’ AEM7 paired with Amfleet cars, returned to Sweden and borrowed an X2000 tilting train set in 1992. With support from ABB, the X2000 not only worked on the NEC, but toured the USA – obviously in part to raise awareness and popularity for trains and railroads. Its regular – if not full time – working was between New Haven, New York and Washington, and during the X2000’s stay, Amtrak agreed with Siemens to test the German ICE train on the same route.

Swedeish State Railways X2000, built by ABB proved a game changer for Amtrak in its view of high-speed electric traction with tilt technology and was instrumental in paving the way for the current and future generations of NEC high-speed trains.

A year later, Amtrak went out to look for bidders to build a new high-speed train for the Corporation, and of course, both Siemens and ABB were in the running, but there was also the Bombardier/Alstom consortium. Bombardier of course had already had some exposure in the USA with the trials of its LRC tilting train. It looked in the 1990s as though Amtrak was heading towards membership of the high-speed club.

The end result was the Acela Express, with an order for 20 of the high-speed fixed formation trains to be designed, tested, built and delivered by the Alstom/Bombardier consortium. The train was operationally intended to be an ‘incremental improvement’ rather than a step change in rail technology as the Japanese “Bullet Trains” or France’s “TGV” had been. It was necessary to further improve the right of way in the northeast, with extensive replacement of existing track with continuous welded rail and concrete ties/sleepers, as well as provide three new maintenance facilities. Some of the right of way work had been carried out under the NEC improvement programme in the 1980s, but even more was needed before “Acela” could be fully operational. This included the rapid completion of electrification work from New Haven to Boston.

The most recent and successful high-speed trains on the NEC are the Alstom Acela design, and will be joined in 2021 and 2022 by the even more technically advanced Avelia series, and continue to expand hgh-speed rail transportation in the USA. Here, a northbound Amtrak Acela Express is captured passing through Old Saybrook, Connecticut in 2011 Photo: Shreder 9100 at English Wikipedia, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=19261912

In November 2000, the Acela Express made its inaugural run. This was a train like no other seen in the USA before, with 12,000hp available from two power cars, and 6 trailers sandwiched between, to provide a smooth, quiet ride at speeds of up to 240 km/hr. No less than 20 of these trains were built between 1998 and 2001, and their popularity with the travelling public dramatically raised Amtrak’s share of the passenger market. Between New York and Washington DC, passenger share grew from 36% to 53%, and between New York and Boston it was even more marked, going up from 18% to 40%. At the same time, airline passenger share declined from 64% to 47% between the Big Apple and Washington.

America’s rapidly growing network of high-speed rail corridors that perhaps owe their inclusion following the achievements of successive Northeast Corridor Improvement Programs.

It has been a huge success, and in part at least has driven the demand for kickstarting investment in other high-speed rail corridors, from 1992 to 2009. The five corridors defined in 1992 were:

  1. Midwest high-speed rail corridor linking Chicago , IL with Detroit , MI , St. Louis MO and Milwaukee WI
  2. Florida high-speed rail corridor linking Miami with Orlando and Tampa.
  3. California high-speed rail corridor linking San Diego and Los Angeles with the Bay Area and Sacramento via the San Joaquin Valley.
  4. Southeast high-speed rail corridor connecting Charlotte, NC, Richmond, VA, and Washington, DC.
  5. Pacific Northwest high-speed rail corridor linking Eugene and Portland, OR with Seattle, WA and Vancouver, BC, Canada.

Six years later in 1998 the Transportation Equity Act for the 21st Century designated another group of high-speed rail corridors, and extensions to existing plans including:

  1. Gulf Coast high-speed rail corridor.
  2. The Keystone corridor
  3. Empire State corridor
  4. Extension of the Southeast corridor
  5. Extension of the Midwest High-Speed Rail Corridor (now called the Chicago Hub corridor)
  6. Improvements on the Minneapolis/St. Paul- Chicago segment of the Midwest High-Speed Rail Corridor.

Extensions has already been approved to the Southeast corridor in 1995, with further extensions to the Chicago Hu, and the Northern New England route and a new South Central Corridor in 2000, and to date further extensions and expansion of these key corridors are either in plan or approved. On top of this, for the original corridor – the NEC – new generation of Acela high-speed trains has been promised, and already under test, as the attached video shows.

Finally, after almost total dependence on the automobile for long distance as well as commuter travel, the age of the train in the USA is coming into its own. Environmental credentials are high, it is sustainable mass transportation, and popular.

A superb view of a new Avelia Liberty trainset passes Claymont, Delaware on a test between Race Street (Philadelphia) and Ivy City (Washington DC). These are set to enter service with Amtrak in 2021, with all sets in by 2022, replacing all current Acela Express trainsets. Photo: Simon Brugel – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=93569932

-oOo-

Useful Links & Further Reading

To Immingham for Christmas

Standard

Many years ago, I read a copy of the magazine “Model Railway Constructor”, and inside, was an interesting item about the “Great Central Railway’s “Immingham Class” 4-6-0, designed under the direction of J.G. Robinson, the railway’s CME, and built by Beyer-Peacock at Gorton, Manchester.  They were classified 8F by the GCR, and went on to become Class B4 under later LNER ownership, but only 10 locomotives were built, with four of the class surviving into British Railways days.

The image at the head of this piece is actually a view of the experimental design – Class 8C – that the Great Central used in trials against the Atlantic types that were in use on express passenger duties, but the 4-6-0s that Robinson developed from these were an operational success. (Image is courtesy of ‘The Engineer’ magazine from 1903.)

This is the drawing that caught my attention back in 1963 – hard to believe it was just over 67 years ago – the level of detail is superb – I always wanted to see an ‘O-Gauge’ model of this engine.

All 10 were built in June and July 1906, and were intended to operate on fast freight and of course fish trains.  But in the mid 1920s they could also be found on express passenger and other services.  They were the second post 1900 design with a 4-6-0 wheel arrangement for passenger traffic, and followed two 4-6-0s designated Class 8C by the GCR, for comparison with Robinson’s 4-4-2 express passenger types.  Both classes could be said to have provided the necessary drive away from the late Victorian ‘Atlantic’ 4-4-2 designs, and ushered in a new era and approach to hauling prestigious trains.

So then, the 4-6-0 was fast becoming popular for express workings – and next out of the blocks on the Great Central was the “Immingham” class – so-called because their arrival in 1906 coincided with the official start of construction of the new docks and harbour at Immingham.  This was some 5 years after the act of parliament was passed in June 1901 authorising its construction.  The act was “The Humber Commercial Railway and Dock Act”.  The act proposed the building of sea walls a dock and railway adjacent to the existing port of Grimsby.  Later in 1901 a further act of parliament enabled the building of the Humber Commercial Railway and Dock, which provided a double track connection for goods traffic to and from the new docks, with links from the south, west and east.  The new facilities were supported and taken over by the Great Central on a 999 year lease, and of course later absorbed into the LNER, with the main purpose being to export coal.

The new docks were an alternative to the expansion of Grimsby, which had been developed by the Manchester, Sheffield & Lincolnshire Railway – later becoming the Great Central – as its major sea port on the East Coast.  The expansion of east coast port facilities was considered a commercial proposition, and the company backed the plans from an 1874 report for new dock facilities by Charles Liddell, and by 1912 the Port of Immingham was open – just a 38 year delay!

So, what better way to celebrate your newly built docks than with a class of the latest designs of steam locomotive, with 6 coupled wheels – the Class 8F, otherwise known as the “Immingham Class”.

Leading Dimensions

Construction

The predecessor design for the “Immingham Class” were also built by Beyer-Peacock in Manchester, and as noted in the table leading dimensions they were fitted with two different cylinder sizes, for comparative trials, and 6ft 9ins coupled wheels.  The cylinders were placed outside the frames, with the short travel slide valves inside the frames, along with two sets of Stephenson valve gear – nice clean external appearance, but no doubt difficult to maintain in service. 

These two Class 8C 4-6-0s were constructed either side of Christmas and New Year in 1903-4 and were intended to be tested alongside Robinson’s existing Atlantic design for express passenger work.  They were built without superheaters originally, but later modifications included the Robinson modified Schmidt pattern superheater, fitted in the smokebox.

The Class 8C was fitted with 6ft 9ins coupled wheels carried in the by then standard plate frames, but with a split between leaf springs for the leading and trailing coupled wheels, with coil springs for the centre driving wheels, which at 6ft 9ins diameter were common with the Robinson Atlantics.  The new 4-6-0s also made greater use of castings in the construction, and in a total length of almost 62ft 0ins, weighed in at 107 tons in working order.

The next out of the box were the “Immingham” or Class 8F 4-6-0, and as originally built appeared with 6ft 6ins diameter coupled wheels, but just before the grouping of 1923 they were fitted with thicker tyres, and the diameter increased to 6ft 7ins.  But, they were, above the main frames at least essentially the same boiler design as had been fitted to the two experimental 4-6-0s, with a saturated (no superheater) boiler 5ft 0ins in diameter, and built from three rings of steel plate, housing 226 x 2ins diameter smoke tubes.  The boiler design was later developed and applied to the renowned ‘ROD’ type 2-8-0s built for service during World War I.

The mainframes were the same as the previous Class 8F, but all coupled axles were fitted with leaf spring suspension, and the cylinder carried on the outside, with the slide valves inside the frames driven by the two sets of Stephenson link motion.  The cylinders included long tail rods for the pistons and double slidebars, mounted to the rear cylinder cover, and suspended from a motion bracket attached just in front of the leading coupled wheels. After the 1923 grouping all 10 locomotives were fitted with superheaters, under Nigel Gresley’s direction, and some of the class were fitted with 21ins cylinders and piston valves by the 1930s.  The “Immingham” Class seems to have been a focus for a range of experiments in terms of the style and design of various boiler fittings, from injectors and safety valves, to different steam domes and chimneys.  In LNER days these resulted in a variety of sub-classes – just to add to the complexity – B4/1 were saturated versions, B4/2 were superheater fitted, and then changed so that B4/1 had 21ins cylinders and B4/2 had 19ins cylinders.

Ex-GC Robinson B4 (“Immingham”) 4-6-0 at Ardsley Locomotive Depot. Although successful, they had a relatively short life, and were ‘non-standard’, and replaced by the hugely successful Thompson B1s soon after World War 2. The B4 class were built mainly for fast freight and fish train work; No. 1486 (ex-No. 6101) was built 6/1906, withdrawn 10/47; it still has the wartime ‘NE’ on the tender.                  
Photo:  Ben Brooksbank, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=18697866

Operations, Building & Withdrawal

Having said that these engines were originally intended for fast freight and fish trains to Grimsby – and of course Immingham – at Neasden, one of their original allocations, they were used on express passenger trains between Marylebone and Leicester.  Engines allocated to Gorton (Manchester) and Grimsby were used on express freight and fish trains, whilst during WW1, Neasden engines were used on troop trains.

During the 1920s they were moved around quite a bit, but spent much of their time on passenger and excursion trains, until they were replaced on some routes by Ivatt Atlantics – slightly ironic perhaps given that they were considered a better overall design for those duties in some quarters.  Later allocated to Ardsley and Copley Hill in the Leeds area, they spent some time  working between Leeds and Doncaster on Kings Cross bound trains.   Into the 1930s they continued to work out of Leeds and often on excursion workings to Scarborough.

A visitor from Ardsley (56B) on 8/6/1947 is “Immingham” class “B4” 4-6-0 no.1488 (6103 until 1946) She was withdrawn from that depot on the last day of November 1948.  (Photo courtesy: Chris Ward at http://www.annesleyfireman.com/index.html  )

With their various sub-classes they continued to work excursion and other passenger turns, and were allocated to East Anglia, and former Great Eastern depots, including March.

But, their days were numbered after the Second World War, especially with the arrival of the Thompson B1 class 4-6-0.  Although earlier in 1939, No. 1095 – then numbered 6095 was withdrawn in July of that year, but rapidly returned to traffic with the outbreak of war.  Unhappily, 6095 was involved in a collision at Woodhead in 1944, and was finally withdrawn.

The remaining members of this Robinson designed 4-6-0 were withdrawn and scrapped between July 1947 and November 1950.  The dubious honour of the last to be withdrawn actually went to the only named member of the class – BR No. 61482 – “Immingham”.

They were overall a very successful design, and had an interesting history in operational service, and had in some way their own part to play, along with their designer in paving the way for one of the country’s most famous Locomotive Engineers.

After the First World War, and as the 1920s approached, the Government was about to start grouping the 100 or so different railways together the Great Central would become part of the new LNER in 1923, and John Robinson was first choice for CME.  But, despite the fact that he was possibly one of the most able engineers of his day he declined the opportunity, on account of his age, and a young H.N. Gresley was appointed instead.  Out of that opportunity, arose another new 4-6-0 design on the East Coast railways – the “Sandringham” Class – but that is another story.

-oOo-

Further reading and useful links:

The Gauge War – It’s Over!

Standard

A recent announcement in the press about high-speed trains that are fitted with bogies that can automatically adjust to a change of gauge seems a remarkable achievement. 

Whilst there have always been different track gauges in many countries around the world, the challenge of running a train from A to B on one gauge, and B to C on a different gauge has usually involved people, or goods, changing from one coach or wagon to another – and sometimes different stations.

Automatically changing the space between the wheels as the train runs entirely from A through to C, when the tracks are different gauges – wow, that’s new – well, relatively.

This is the automatic gauge changing train for international services unveiled on October 21, and manufactured by CRRC (Changchun Railway Vehicles).  Derived from the existing CHR400-BF trains of the ‘Fuxing Hao’ China Standard EMU family, this latest 212 metre long trainset is intended to operate between China dn Russia.  Automatically changing gauges along the way.
This is the automatic gauge changing train for international services unveiled on October 21, and manufactured by CRRC (Changchun Railway Vehicles).  Derived from the existing CHR400-BF trains of the ‘Fuxing Hao’ China Standard EMU family, this latest 212 metre long trainset is intended to operate between China dn Russia. 
Automatically changing gauges along the way.

Back in 1880s, Brunel’s ‘Broad Gauge’ advocates were at war with supporters of Stephenson’s ‘Narrow Gauge’, and although this did not necessarily result in literal pitched battles between teams of ‘navvies’, the contractors building the lines were occasionally at loggerheads.  One flashpoint was in Gloucestershire on a route from Stratford-upon-Avon to Chipping Campden, where, having been forced to build a 1-mile long tunnel near Mickleton, and just to the north-west of Campden.  The ‘battle’ involved some 3,000 men, and the Riot Act was read on two occasions, over two days, and Brunel and Marchant both agreed to arbitration.  However, the railway company who had appointed Brunel as engineer paid off Marchant and his contractors and completed the tunnel the work themselves.  Unsurprisingly the legacy of the disturbances caused concern from all the locals of Chipping Campden, and events even reached the pages of the ‘Illustrated London News’.

Replica of GWR Broad Gauge (7′) Gooch “Alma” or “Iron Duke” Class 4-2-2 “Iron Duke” with wood clad boiler and firebox at the Great Western Society’s Didcot Railway Centre.   Photo: By Hugh Llewelyn CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=74608818

The gauge war – waged on both the technology and economic front was partially settled in 1846, and followed from an Act of Parliament, with the exciting title “An Act for regulating the Gauge of Railways”.  The reason this was only partially settled, was of course because it made clear that it was illegal to build any new railway that was not to the standard gauge of 4ft 8 ½ins and 5ft 3ins in Ireland.  BUT, the exception was Brunel’s 7ft gauge Great Western Railway – oh and various acts of Parliament already passed or in progress relating to various extensions, branches and other lines in the South West, parts of Wales, etc. 

Nice, clear and straightforward!  The same act also included a clause that prevented any railway gauge to be altered after 1846, used for “the Conveyance of Passengers”.  Fascinating, but clearly problematic, and the system of two gauges in England led to the duplication of passenger and goods station facilities in some locations, and the Act also required the GWR to include a third rail where the standard and 7ft gauge lines met.

Gauge disparity around the world has always caused difficulty, and perhaps nowhere more evidently than in Australia, where the various states began railway projects, with different contractors, and engineers leading to long term operational problems.  The vast majority of railways are built and operate on the standard gauge – 1435mm – but there are still those differences, whether it is in Spain, India, Switzerland or Russia.  In fact, the railways in Russia are built to the Irish standard 5ft 3in gauge, and that’s where the latest techniques and technology to achieve more seamless international train operations with China are being deployed on high-speed services.

The Change of Gauge Made Simple

Back in 2003, an interesting story appeared in the Japanese journal “Railway Technology Avalanche” describing “Gauge-changeable EMUs”.  It was stated that these were developed for through-operation between 1,435-mm gauge and narrow-gauge 1,067-mm gauge lines, and the 3-car test train was fitted with two types of bogie, where the back to back distance could be changed on the move.  Amongst the attributes needed were the capability to change the gauge while running, the inclusion of traction motors, high-speed running stability, and the ability to operate on routes with sharp curves.

The two types of bogie tested included one where the traction motors were essentially fixed to the wheel centre, which could be moved laterally along the fixed, non-rotating axle.  This was achieved by track mounted rails that provided support to the axleboxes, which in turn supported the vehicle body – a locking pin through the axlebox allowed the wheelset to be released and slid along the axle.   The second design adopted a single piece wheel and axle arrangement, with a Cardan shaft drive from the body mounted traction motor. With this design, a stopper in a groove in the axlebox fixed the wheels at that gauge, and during gauge-changing operation the stopper was raised by an arm mounted at ground level, with the wheelset then free to slide laterally to the new track gauge.

Class S/121 EMU for Spain includes the CAF designed ‘BRAVA’ system on the bogies, which allows change of gauge without stopping – perfect for international services between Spain, France, Italy, and other European networks.  In operation since 2009.

Each of these approaches required significant changes to the vehicle running gear, and track mounted rails and arms to complete the transition between rail gauges, but none resulted in any production series build of these EMUs.  

But, this was not the first application of such novel technology – that honour fell to Spain, where in 1969, the ‘Talgo’ system first appeared.  In Spain, the principal track gauge selected was 5 ft 5 2132 in – commonly known as the Iberian Gauge.  However, in the 1980s, all new high-speed lines – and especially those on international routes were constructed to standard gauge, which made cross border services to France much more straightforward.  The Talgo principle was well established in Spain though, and using the ‘Vevey Axle’ provided these unique, articulated trains with the ability to change gauge without stopping, and of course to cross borders.  The system also provides for much higher speeds today, and tilting technology is embedded in the design, and Talgo technology has been developed in recent years and now operates in Finland, Russia, Kazakhstan, and even the USA.

This is what the CAF designed ‘BRAVA’ system looks like in action:

Very impressive.

Spain continues to operate an extensive fleet of gauge-changing trainsets between 1435 mm and 1668 mm gauges, but they are limited to a maximum of 250 km/h.  So, the development of ‘gauge changing’ trains has progressed quite a bit in recent years, but less so perhaps on really high-speed fixed formation sets, for standard gauge routes, except for the CAF built Class 120 and 121 for Spain. 

Another view of the latest derivative of the CHR400-BF trains of the ‘Fuxing Hao’ China Standard EMU family, showing the track mounted infrastructure and a wheelset used on these latest high-speed trains.

The most recent addition to the high-speed gauge changing without stopping club is China, where, in October 2020 the state-owned rolling stock manufacturer CRRC Changchun Railway Vehicles, displayed a prototype gauge-changing high-speed train intended for international operation.  At 212 m long, the new train is a development of the company’s CHR400-BF design, and intended for international operation between China, Mongolia, Kazakhstan and Russia, at speeds of up to 400km/hr.  On top of this, the train is planned to work from different voltages, and with operational temperatures varying from +50C to -50C.

Interestingly, one of the first proposals for a variable gauge wheelset was put forward for the GWR at the end of its ‘Broad Gauge’ era, in 1886, by one John Fowler.  Six years later, the ‘Battle of the Gauges’ in Britain was over, and standard gauge was king.  As we know, the rest of the world continued to follow a variety of gauges, but perhaps that problem at frontiers, or between different railway companies has finally been laid to rest with these latest gauge-changing trains.

-oOo-

Useful Links & Further Reading:

Leaves on the Line : Wrong Kind of Snow

Standard

These have been the sorts of headlines that have greeted rail travellers from the mid-Autumn to early Spring, every year on Britain’s railways, and back in the days when it was just British Rail, the target for complaints and abuse was just one organisation. Today, and coming in the next 8 weeks perhaps, the same problems will doubtless occur, and delays, cancellations and complaints, along with tempers no doubt, will rise.

But, are we any further forward? The answer is yes and no – obviously!

Recently, a research paper was published identifying the tannin in leaves that mixed with the damp conditions at the railhead, and in Network Rail’s words – are “the black ice of the railway”. This in certainty will reduce friction between rail and wheel, and loss of traction. The problem, is how to remove it, and increase the adhesion levels.

This was how the media ‘broke’ the story at the end of July.

Guardian headline

Back in steam days it was, to some degree, rather more straightforward perhaps, mixing steam and sand directed at the interface ahead of the wheels as they made contact with the rail was a simple option – not infallible, but an option. Of course, that process continues to this day, as the ‘standard’ method – but improvements were and are essential.

In 2018 the University of Sheffield offered a possible solution to the leaves on the line question with an innovative idea using “dry ice”, in a trial, funded by a grant from Arriva Rail North, which led to further trials on a number of passenger lines during autumn 2019.  Working together with a Sheffield business – Ice Tech Technologies – the process was tested on little used freight lines, in sidings at depots, and later, at other locations. This is a video showing the basic elements of the process:

Fascinating, but perhaps still some way to go.

The CO2 used, is a by-product of other industrial processes, and unlike the conventional railhead cleaning and sanding, does not leave a residue on the rail head. The track cleaning trains do not have to carry 1000s of litres of water, and longer distances can be treated.

Overall the process is intended to provide improved traction and braking control.

At the heart of the challenge posed by leaves, is that layer of ‘black ice’, which in autumn and winter causes so much passenger misery and operational problems. Now, back in Sheffield, the university’s renowned skills and knowledge have identified the cause – and the answer seems to be ‘tannin’, which is present in the leaves falling from the lineside trees every year. These large molecules seems to be the key ingredient that leads to the formation of the compacted layer on the surface of the rail, providing that unwanted reduction in friction at the rail-wheel interface, in turn leading to traction and braking.

Network_Rail_plant_at_Dereham

Network Rail Windhoff Multi-Purpose Vehicle DR98910/60 at Dereham in May 2008.      Photo: DiverScout at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6802613

The railway environment provides many challenges in actually running changes as environmental conditions change over the year, but in Britain, winter especially has been the cause of many train cancellations and delays. Nowadays, the operation of trains and signalling systems are ever more dependent on security of communication – be that signalling centre to train, or track to train – and the on-board systems and traction drives are equally prone to the impact of our changeable weather.

Back in the 1980s, there was a famous, and often-repeated phrase used by a British Rail spokesman to respond to a journalist’s question about snow, train delays and cancellations. That remark: “the wrong kind of snow” was as historic as the BBC weatherman’s observation that a hurricane was not going to happen – and then it did, and Sevenoaks became Oneoak!

The “Wrong Kind of Snow” remark prompted me to write an article in Electrical Review looking at how the UK, dealt with extreme weather conditions, and compared these to how our near neighbours, in continental Europe managed these events. The full feature is as shown below – click on the image to read in full.

Wrong Kind of Snow3

Let’s hope these discoveries abojut tannins and the new techniques for keeping the rail head clean will work to better effect, and reduce the impact of leaves on the line in the coming months.

-oOo-

Useful Links & Further reading:

Ice Tech Technologies Ltd

Rail Innovation & Technology Centre (RITC) at the University of Sheffield

Halls of Fame – A Mixed Traffic Masterpiece

Standard

Some might say, that the Great Western Railway’s “Hall” and “Modified Hall” class 4-6-0s were simply a do anything, go anywhere mixed traffic design – which they were – but of course, the GWR would not be able to operate without them. These locomotives were the unsung heroes of the steam railway, and yet not one was set aside for inclusion in the UK’s “National Collection”. Happily though a number of both the original Hall and Modified Hall designs can still be seen in operation, and under restoration. In fact, one of their number is being ‘re-modified’ to represent the precursor Churchward “Saint Class”, which is a tribute to the design’s longevity and importance.

This class of 4-6-0 was easily the most numerous on the GWR., and was a design whose ancestry can be directly traced to the famous Saint Class. In a number of instances they have been referred to as “6ft 0ins Saints”. No fewer than 258 of Collett’s new Hall Class engines were built between 1928 and 1943, following the highly successful modification and operation of saint class engine No. 2925 “Saint Martin”.

Designs for the new Hall Class locomotives were born out of Churchward’s practice, with some influence from the operating department.
They were perhaps the first truly mixed traffic type owned and operated by the GWR and although built when C.B. Collett was Chief Mechanical Engineer, the basic format had already been outlined by Churchward in his scheme of 1901. The success of the 43XX moguls would, in the opinion of’ the running department, be improved still further with the lengthening of the wheelbase and the provision of a leading bogie, and for greater power, a GWR Standard No. 1 boiler.

In December 1924, came off Swindon Works with 6ft 0ins coupled wheels, and the Collett side window cab. But, these were 
the most obvious differences, with others that were thought necessary on the rebuild but not included later, or modified for the production series engines.

The rebuilding of’ “Saint Martin” incorporated standard ‘Saint Class’ cylinders, which following conventional Swindon practice, required them to be carried lower in the frames, in order to line up with the centre line of the smaller coupled wheels.

Saint Martin - Green Folder GWR 63

This is the locomotive which gave birth to the most numerous, popular, and successful of’ the GWR two-cylinder classes. The extensive modifications to No.2925 Saint Martin, here seen in converted form, resulted in the building of the Hall Class 4-6-0s.    © Lens of Sutton

So, that’s where the new “Hall Class” started life, as a combination of an earlier 4-6-0 design, paired with the operating ideas and experience with the 2-6-0 “43XX Class” moguls.

The New Kid On The Block

The appearance of’ the new mixed traffic engines was not without its troubles, despite the successful trials with the rebuilt “Saint Martin”, though fortunately, none of these related to the design, construction, 
or operation of the new engines. On the GWR, as on other companies’ lines,
 the 1930s was a time when many of the older designs were being scrapped and replaced with more modern, more efficient designs. However, the rail enthusiasts of that time regretted the arrival of the “Hall Class” only because many of the ageing 4-4-0s – some dating back to 1890s – would soon be extinct.

The first 80 of the new breed of locomotives came out of Swindon Works under Lot 254, between December 1928 and February 1930.

4901 Adderley Hall copy

The first of the many – No. 4901 in photographic grey at Swindon Works in 1928. This was a very successful design, and formed the backbone of GWR and BR Western Region mixed traffic working until it was scrapped in 1960.           (c) Historical Railway Images

Unsurprisingly they were fitted with the Swindon Standard No.1 boiler, as adopted for all large 10-wheeled locos, and fitted to their predecessor “Saint Class” 4-6-0s, but with Collett now in charge, the footplate crew were provided with a larger, side window cab. On the face of it this might not seem a key design improvement, but compare the Hall cab to an older design, such as the Saints, with their Churchward cab, the protection from the elements was visibly improved.

In construction, the new design largely kept to Swindon practices, whether it was for boiler, firebox, frames, or bogie design, with the Collett changes having been proven in practice with the highly successful “Saint Martin” – rebuilt and delivered in December 1924. In fact this rebuild was so successful that an order for those first 80 “Hall Class” was placed with Swindon Works in December 1927.

Eventually, 257 of the “Hall Class” were built up until the early spring of 1943, and cost £4,375 each  in the first batch, and whilst subsequently, cost rose, they rapidly became the GWR’s workhorse, and universally operated across the network.

Hall diagram

Boiler, Frames, Wheels and Motion

These were the Swindon “Standard No.1”, and were fitted to all the GWR’s 10-wheeled locos, and were the same as those fitted to the “Saint Class”, but the Halls boilers had the added suffix ‘A’, as prescribed in the company’s extensive classification scheme. The boilers were built in two rings, with the second ring tapered, attached at the rear to a trapezoidal shaped firebox, following ‘Belpaire’ style, and “waisted in” to fit between the frames at the cab end. The firegrate itself had a flat rear portion, with the front tapering downwards, from just in front of the training coupled axle.

The cylinders were mounted on the outside of the frames, as part of a casting with half of the smokebox saddle. The inside admission piston valves were carried above the cylinders, and a rocking shaft transferred the movement through the frames from an extension rod, expansion link, and the eccentric rods attached to the driving axle. Sounds complicated! Eccentrics mounted on the driving axle were the characteristics of the Stephenson valve gear, which, by the 1920s was standard Swindon practice.

The 6ft 0ins coupled wheels had 20 spokes, and were paired with 3ft 0ins diameter wheels on the leading bogie. Churchward’s simple design principles in the generously proportioned axleboxes, with pressed in whitemetal liners were maintained by Collett – for the Hall Class these were 10ins long and 8 ¾ ins in diameter. Coupled wheels were balanced in pairs, with steel plates rivetted to the spokes, and molten lead poured into the gap, and was a change from earlier practice, and claimed to provide greater accuracy in balancing.

That same simple design approach was equally effective in the coupling rods, which were plain, or slab sided, with no fluting – a practice adopted on many railways, ostensibly to save weight and reduce hammer blow.

Tenders

No less than three different designs of tender were paired with the class. From No. 4901 to 4942, a standard Churchward 3,500 gallon design was used, whilst from 4943 to 4957, a new Collett design of 3,500 gallon capacity was used, and finally a new 4,000 gallon Collett tender for the rest. This last type still carried the characteristic out turn to the upper sides of the bunker space, but when Hawksworth took over from 1941, this changed, and with the new ‘Modified Hall’ and ‘County’ class 4-6-0s, a simple, slab sided tender was adopted. That old simplicity rule appearing again.

Hall Class – Leading Dimensions

Hall Class Dimensions

Hawksworth’s Modified Hall

This was a fair bit more than modifications, and demanded changes to jigs, tools and working practices at Swindon, and so perhaps to describe this as a modification was wrong. It was much more of a development, by applying Hawksworth’s ideas to Churchward design and building a new mixed traffic locomotive for the GWR.

Hawksworth too over from C.B. Collett in 1941, and oversaw the motive power of the GWR until nationalisation in 1948. But, where Collett had largely continued the Churchward model, Hawksworth took a more radical – with a small ‘r’ – approach. He had up until that point been the company’s Chief Draughtsman, with responsibility for locomotive testing.

First out of the blocks was the 6959 Class or “Modified Hall”. These 71 locomotives were built between 1944 and 1950, and based on the Hall Class, a number of experimental ideas included that improved the performance of the 6ft 4-6-0s across its operational range.

Modified Hall 7923 Green Folder GWR 69

Classic Modified Hall on shed in the early 1960s. No. 7923 “Speke Hall”, in final BR lined green livery and sporting the post 1956 on the Collett 4,000 gallon tender. On the fireman’s side, the Modified Halls had the fire iron tunnel alongside the firebox, as standard practice, whilst for 7923, the old familiar Collett 4,000 gallon tender was used.         Photo: RP Bradley Collection.

A key change in the design of the Standard No.1 boiler used on these engines, was the fitting of a 3-row superheater, with 21 flues, which was intended to improve the speed and performance of the type, along with further boiler/firebox changes to cope with poorer quality coal. Mechanically too, the Modified Halls were a simpler construction, with full length frames, and cylinders attached to the outside faces, instead of the previous casting, which included a part of the smokebox saddle. These changes inevitably brought down building costs, and the simpler layout reduced operating and maintenance costs.

The adoption of a single mainframe construction, from drag box to buffer beam demanded a major change to the fabrication, and assembly, of the cylinders and valves. This simple change away from part plate and part bar frame to all plate frame was a radical step, and which must have caused major changes in the practices used in the works foundry and erecting shops. The cylinders, still driving the Stephenson valve motion by means of rocking shaft, were also still 18 ½ ins by 30ins, but were now cast as two separate pieces, bolted to the outer, machines faces of the mainframes. To carry the smokebox, a new cross stretcher was placed between the frames, and extended upwards to provide a support and mounting for the smokebox itself.

Modified Hall diagram

All GWR two-cylinder engines had a pronounced fore and aft motion, especially when starting, and the Modified Hall was no different, and whilst their were inconsistencies in the layout of the steam and exhaust pipes at the front, that pronounced motion continued. But, perhaps the most obvious departure was the widescale adoption of mechanical lubrication. Up to the arrival of these locomotives, GWR practice was “hydrostatic lubrication”, which consisted of the driver counting the number of drops (15 drops every 2 minutes) of oil passing through a sight glass on the footplate. The new locomotives had the mechanical lubricators mounted on the running boards, just ahead of the leading coupled wheels, and for guidance, the cab gauges included an ‘oil’ / ‘no oil’ indicator.

The tenders on the first 14 of the modified class were straightforward Collett 4,000 gallon types, but from 6974 onwards, Hawksworth provided the new, much simpler to build, slab sided design. The approach here followed that of other railway companies, in pursuing a simpler design and build process, to reduce capital and operational costs, with the intent that maintenance practices would be cheaper.

Modified Hall Class – Leading Dimensions

Modified Hall Dimensions

Oil Burners

The use of fuel oil for railway locomotives at the time the Hall Class arrived was not in regular use in Britain, because of the abundance of coal supplies – and no doubt the cheap cost of mining.   Even so, it had been tried back in 1893, with the most famous examples being on the Great Eastern Railway – as an experiment.

Shortly after the end of World War 2, there was a coal shortage GWR, and in particular in 1946/47, where the severe winter drove increased demand. But, of course, there was a manpower shortage as well, despite the ‘Bevin Boys’, who were recruited to replace the young miners, who had been conscripted during the early war years.

So, the railways, including the GWR, revisited the idea of equipping steam locomotives for burning fuel oil. This was also encouraged by the promised removal of the fuel-oil tax, and in October 1946 a subsidy of £1 per ton was paid to consumers – such as a railway – of fuel oil. This subsidy offset the fuel-oil tax, and with that in mind the GWR planned to convert 84 Hall Class engines to oil burning, but in the end only 11 were completed, with another 10 fitted with the oil burning equipment. In addition, the Government promised help to all companies changing over from coal to oil, which included the bulk purchase of all the necessary equipment, both on the loco and on the shed.

Converted

Garth Hall - oil -Green Folder GWR 57

“Garth Hall” as converted to oil burning in 1946.

So, for the GWR, the first loco to be converted was No. 5955 “Garth Hall” in June 1946, and it was allocated a new number – 3950. The remaining 10 locomotives were converted in April and May 1947, and included: 4907/48/68/71/72, 5976/86, 6949/53/57. The average life of these locos as oil burners, was around 2 years, with all being reconverted to oil-burning in 1950.

Oil Refuelling Depot layout cover

Re-Converted

Garth Hall - no oil -Green Folder GWR 133

By 1950, the few Hall class engines that had been running as oil-burners, were all converted back to coal burning. In this view, the original candidate “Garth Hall” is paired with a standard Hawksworth 4,000 gallon tender.

Operations

So, why were these locomotives needed? They were introduced at a time when the GWR had few modern mixed traffic designs, but plenty of the express passenger variety, and whilst Churchward’s application of new developments, especially following French practices were a great improvement on the Dean era, traffic was changing. Churchward had already introduced the 47XX series of heavy freight 2-8-0s, but a design that could be used on both passenger – long distance, or shorter – and a variety of freight workings was becoming an essential tool in railway operations.

When the Halls started to appear, all of the ‘Big Four’ companies were engaged on modernising and standardising their locomotive stock, which, in the 1930s resulted in many hundreds of the old ‘pre-grouping’ designs being scrapped, and replaced by engines with a wider operational range.

On the GWR, Churchward’s approach to locomotive design and standardisation in 1901 was mirrored in later years, by British Railways from 1948, and included elements of current best practice at home and abroad. Tapered boilers for example were introduced after studying the American approach, whilst the firebox was developed from a design popularised in Belgium, by Belpaire.

Churchward’s successor C.B. Collett applied these radical changes introduced a decade or so earlier in the “Saint Class” conversion in 1924, and delivered the most successful mixed traffic design the GWR operated, as the “Hall Class” 4-6-0.

The earlier ‘standard designs’ had included a mixed traffic loco with 5ft 8ins coupled wheels, and was a type that had been advocated by the Operating Department. The Hall experiment – which you could conclude was an exercise in recycling, delayed the introduction of a 5ft 8ins mixed traffic engine, and was entirely down to the Hall’s operating success. Collett did finally introduce a 5ft 8ins mixed traffic design – the “Grange” class, from 1936, more than a decade later.

Initially, the first 14 Halls were sent out to the West Country and based at Laira and Penzance, but as more were built, they were soon spread out across the network, and by 1947; some 30 depots had an allocation of the Hall Class.  From their earliest days, workings normally associated with Halls were as varied as the names they carried, from freight, empty stock, stopping and express passenger. Only the prestigious ‘Cornish Riviera’ express was excluded from their range, but in later years, even this was overcome.

Barring engine 4941 “Bowden Hall”, which received a direct hit from a bomb in WW2, most of the class survived into BR days unscathed, and remained so until around 1961, and as dieselisation progressed rapidly on the Western Region, only 50 Hall Class engines were at work in 1965.

The Modified Halls of course suffered similar fate at the end of steam, but they had earned a reputation as speedy machines, and were well though ouf by enginemen and maintenance crews alike. The various changes to their design and construction certainly seemed to add to their value as mixed traffic designs, and coupled with their Collett progenitors, they were indeed a mixed traffic masterpiece, shared by three different CMEs of the old GWR.

After Life

Perhaps unsurprisingly, no fewer than 11 of the Hall and 6 of the Modified Hall class engines were rescued from the breakers’ torches, and now ply their trade on a number of Britain’s Heritage Railways. There are 3 Hall Class and 3 Modified Hall Class fully operational, with 4 of the Halls either being overhauled or restored, whilst 4920 is listed as stored on the South Devon Railway. Perhaps most interestingly, a Hall Class achieved superstar status thanks to Harry Potter and J.K. Rowling – 5972 “Olton Hall” is now a static exhibit at the Warner Brothers Studios.

Of the Hawksworth Modified Halls 4 are fully operational, with one being overhauled at the time of writing, and the final member 6984 “Owsden Hall” being restored at the Buckinghamshire Railway Centre.

Preserved Hall Class Engines

Preserved Halls

Preserved Modified Hall Class Engines

Preserved Modifieds

Further Reading & Links:

  • “GWR Two Cylinder 4-6-0s and 2-6-0s, Rodger Bradley,
    • Pub; David & Charles 1988; ISBN; 0715388940
  • “The GWR Mixed Traffic 4-6-0 Classes”, O.S.Nock,
    • Pub; Ian Allan 1978; ISBN; 0711007810
  • “Great Western Steam”, W.A.Tuplin,
    • Pub; George Allen & Unwin 1982; ISBN; 0043850359
  • “The Great Western at Swindon Works”, Alan S Peck;
    • Pub; Ian Allan 1998; ISBN; 9781906974039

 

Raveningham Hall video (Modified Hall Class)

Rood Ashton Hall video (Hall Class)

-oOo-

HS2 – Off We Go – Better Late than Never?

Standard

Well, now it’s official, HS2 gets the go ahead by the Government – well, as far as Birmingham at least, since that’s the only bit that has been sanctioned by Act of Parliament.  The arguments will continue to rage about its benefits and certainly its costs, but those who are using the environment to plead against the project have already lost, and hedgerows and woodlands, as well as houses will disappear.

The main argument in favour of the London to Birmingham link now being advanced is that of increased rail capacity, which it must be assumed is that removing passengers travelling on the existing London to Birmingham link will move to HS2.  That it is said will free up the paths on the WCML for freight, and other, regional and semi-fast connections.  The questions that this now raises is how will that freed up capacity be allocated, how will it be regulated – unless of course the rail network is nationalised, there will be further negotiations around passenger train franchising.

 

Of course it will not ‘rebalance the economy’ as one commentator offered on the TV news today, but it could be seen as starting in the wrong place and going in the wrong direction, as another commentator implied.  It should, as is widely acknowledged now, have started as HS3, linking the northern towns and cities, between Liverpool, Manchester, Leeds, etc., and then driven south towards the midlands.  One politician on the TV commented that, as a midlands MP it would help him get to Westminster quicker, and would provide a jobs boost for commuters to London.

Then, there is the technology question, and interoperation and compatibility with existing high speed train services – unless these just stop at interchange stations, and passengers change platforms from one train to another.  Of course, the other infrastructure element that needs investment is the power supply.

Back in 2000, there was a great deal of concern about the supply of electricity from the national grid to key areas and sections of the WCML, but I imagine that this will not trouble HS2 for a while yet – nor when it runs alongside the existing routes?

This is a vital piece of work, not only from the UK’s railway industry, but it MUST be only the start of projects that “rebalance the economy“, and it is ESSENTIAL that HS3, or Northern Powerhouse Rail follows.   The Railway Industry Association CEO, Darren Caplan made the following comments:

“The Railway Industry Association and our members support the Government’s decision today to get HS2 done, a decision that could unlock a new ‘golden age of rail’.

“HS2 will not just boost the UK’s economy and connectivity, but will also enable other major rail infrastructure projects to be delivered too, such as Northern Powerhouse Rail, Midlands Rail Hub, East West Rail, Crossrail 2, and a range of other schemes.”

Overall, the announcement made today has also drawn positive comments from a range of sources.

Dr Jenifer Baxter, Chief Engineer at the Institution of Mechanical Engineers said:

“The Institution of Mechanical Engineers is delighted that the Government has retained confidence in the benefits of the HS2 project.  The resulting improvements to both north-south and east-west flows in the North of England will lead to economic growth, modal shift from road and air to rail for both passengers and freight. This will provide significant benefits for reduced greenhouse gas emissions and reduce pollutants that contribute to poor air quality.

The routes minimise the impact of construction on the operation of today’s railway with opportunities to investigate how the high-speed rail link can be delivered with minimal environmental impacts. For example, more refined modelling using information from High Speed 1 might indicate where some expensive tunnelling may be avoided.”

I would like to agree with Dr Baxter, especially with regard to modal shift for freight, but the trend so far in the rail capability does not support that idea – there is an increased demand yes, but connecting up existing facilities in the north has not happened.

In 2015, a £3million+ intermodal facility was opened at Teesport, and PD Ports saw its customers choosing to use intermodal platforms, with a “significant modal shift” continuing.

Perhaps the most telling comment made by this port operator is this:

“There is a significant demand from our customers to be able to move freight east to west through this Northern corridor allowing shorter distances to be covered by rail. Without a viable alternative route for rail freight with the necessary capacity and gauge, the growth we are experiencing will be limited and at risk of reducing due to transport restrictions.”

In addition then to the lack of investment in rail freight generally, there is a very considerable difference in any economic strategy to enable the oft-quoted “Northern Powerhouse” to actually fulfil its aspirations.  The approval for HS2 does not, improve that situation at all, and the extension of the initial HS2 project as far as Crewe, could likely create a bottleneck as freight and passenger services converge.

By 2017/18, the total goods lifted by rail in the UK was down to only 75 million tonnes annually, and according to ORR estimates, represented less than 5% of total freight moved.  The non-bulk services offered by British Rail under Speedlink, and other services have long since been replaced by 1,000s of “white vans” from DPD, UPS DHL, etc., etc. – many travelling hundreds of miles a day.  How can they be integrated and improve connectivity on the back of HS2?

The impact on freight and modal shift?

Babcock Rail Wagons 4For passengers HS2 might well assist in faster commuting to London from the West Midlands, but it has little or no prospect of improving rail transport in the North, and perhaps only marginal in the Midlands.  Couple that with the failure to build and investment in the northern rail infrastructure – indeed the cancellation of electrfication projects – it is difficult not to say that the project is starting from the wrong place!

Useful links:

            -oOo-

Nationalised Northern Rail

Standard

Well, it took a bit of time, but finally some action has been taken on another of these failing train operating franchises.  Of course nothing will change overnight, and no doubt nothing will stop those interminable excuses for the poor performance:

  1. Platforms too short
  2. Electrification delays
  3. Too many passengers
  4. Etc.

I think the most untenable of the excuses is the ‘short platforms’.  Back in the days of steam, when an 8-coach train pulled up at a station where platforms were short, the train often pulled further along to allow the trailing coaches to access the platform.  But perhaps now that’s no longer possible – after all trains must be at least 10 coaches or more today, surely?

The idea that electrification delays – they will cite the Preston to Blackpool stretch as an example – is equally daft.  That’s worse than the “wrong kind of snow” – because it was a planned piece of work, and the infrastructure is already owned and managed by the Government as Network Rail.   So was that just a – look over there “squirrel” excuse to deflect attention from the operators overall poor performance?

According to recent figures from the ORR Network Rail are “responsible” for 58% of delays to train services.  Is that shorthand for Government have UNDER-INVESTED in the rail network infrastructure?

It must be, since Network Rail DO NOT RUN TRAINS.

 

Can’t see that holding up too well against the timteable chaos of the previous year.

Anyway, we are going to see the change from 1st March, and the media area ready, and busy with their various pronouncements:

Screenshot 2020-01-29 at 14.48.22

Further Reading

RMT ON NORTHERN BEING TAKEN INTO PUBLIC OWNERSHIP

Screenshot 2020-01-29 at 15.10.54

-oOo-

The Digital Railway – Still On Time?

Standard

Back in the 1990s, Railtrack, and subsequently Network Rail, was charged with implementing the Europe wide signalling and train control system – ERTMS. This included the emerging ETCS (Electronic Train Control System), which was intended to remove the use of optical, lineside signals completely, and use track to train communications through a system of track mounted transmitters/receivers.

But is there more to this digital railway business than simply providing a better train control, management and signalling system?

The UK is still years behind our European neighbours in implementing the ERTMS platforms – although to be fair Railtrack/Network Rail have rolled out the halfway house of Train Protection & Warning System (TPWS), and today the core routes are at the entry level for ETCS. Today’s push for the “Digital Railway” has a lot of chatter, and media speak around improving performance and capacity for economic and commercial growth, but on the technology front, there seems to be some way to go – still.

Back in the late 1990s, the TPWS platform was supposed to have a 15-year lifespan, so is now beyond its final years of scheduled life, alongside the upgraded conventional signalling systems. By 2001 we were implementing systems that conformed to ETCS Level 3, with the Alstom TCS (Train Control System), for the upgrade of the West Coast Main Line (WCML).

There were plans to fit ETCS cab equipment in new stock, but following revisions to Control Period 5 with the ‘Hendy Review’ funding was cut, and the delays in deploying the system could be said to be pushing the UK further behind.

In 2015, the Rail Delivery Group published its 3rd annual “Long Term Passenger Rolling Stock Strategy”, where it stated that:

“During CP5 and CP6, the European Train Control System (ETCS) will be fitted to many fleets
 in preparation for the operation of the European Rail Traffic Management System (ERTMS).”

2015 Rolling Stock StrategyScreenshot 2019-11-21 at 10.51.37

Originally, it was considered that the modular nature of ETCS would be attractive to introduce the technology at Level 1 on secondary routes, interfacing to the existing IECC (Integrated Electronic Control Centres providing automated route setting, amongst other functions), and SSI (Solid State Interlocking) technology. This ability to upgrade in a phased manner was and is important to the UK and other rail networks, with open communications interfaces allowing integrated working across Europe.

But has the signalling and train control system finally been implemented to the optimistic plans of 2001, when the WCML upgrade was completed?

Perhaps not, since back in 2010, the Department for Transport (DfT)was working with outside advisers to try and determine the risks and benefits of adopting – at a future date – possible adoption of the European Railway Traffic Management System (ERTMS/ETCS) Level 3. This report came to the obvious conclusion that it was necessary, desirable, cost effective and efficient – but that was almost a decade ago.

Towards the end of 2016, and although the Rail Delivery Group, and Network Rail’s initiative for a cross-industry Digital Railway programme was progressing, the Transport Committee in its 7th Report (Rail technology: signalling and traffic management) showed that there was still much discussion on the topic:

Their conclusion:

We conclude that improvements to signalling and traffic management technology are needed to deliver a world-class rail network in the UK. In principle we support the idea that the deployment of the European Train Control System (ETCS), Traffic Management software and Driver Advisory systems should be accelerated but this should be subject to careful consideration of the Digital Railway business case, clarity about funding, and a clear understanding of how this programme would affect existing plans for work on enhancements and renewals. In particular, Network Rail’s Digital Railway business case should include a full cost/benefit analysis of all potential systems for a particular route, and consult upon it, before finalising its Digital Railway strategy. 

So, the UK’s rail network, its technology and industry does still appear to have some way to go – despite the fitting of ETCS Level 3 technology to the latest rolling stock, and plans for trials on various routes.

That said, the limited trials using Class 155 multiple units and departmental Class 37 diesels in Wales, on the Cambrian line paved the way for the application of ETCS level 2 on the Thameslink route, with GTR Class 700 trains. The trains began operating in August 2016, with a train running from St Pancras to Blackfriars, and having the ATO software overlay installed to allow automated operations. According to some reports this meant the driver would be responsible for supervising operations via instructions and guidance from in-cab screens, as opposed to controlling the train in a more conventional manner.

Currently, under the Control Period (CP) plans for the East Coast and ex-GWR main lines, ETCS will be introduced in phases – but it will take between 2024 and 2049 to complete the work. This is what is on the current plans:

  • CP6 (by 2024) – KX to Crews Hill and Hatfield
  • CP7 (by 2029) – Sandy to Peterborough; Grantham to Retford and Plymouth to Totnes
  • CP8 (by 2034) – Peterborough to Grantham; York (North) to Northallerton; Ferryhill to Alnmouth, and Paddington to Slough and Heathrow; Totnes to Exeter
  • CP9 (by 2039) – Retford to York (North); Northallerton to Ferryhill; Alnmouth to Berwick, along with Wootton Bassett to Exeter via Bristol, and Pewsey to Cogload Junction
  • CP10 (by 2044) – Didcot area (Cholsey to Wantage Road); Didcot to Oxford and Honeybourne
  • CP11 (by 2049) – Reading area (Slough to Cholsey); Wantage Road to Wootton Bassett; Reading to Pewsey

But no work will be undertaken on the ECML for Control Periods 10 and 11 – well at least that’s the current position, I think.

Thameslink trains now operate with ETCS Level2, with ATO in the central section, which puts that route at the forefront of implementing ATO with ERTMS, operating the new Class 700 Siemens “Desiro City” multiple units. These were procured under a PFI arrangement from 2013, from a consortium of Cross London Trains Ltd, which included Siemens Project Ventures GmbH, Innisfree Ltd., and 3i Infrastructure Ltd., and the trains began operating in 2016.  They were either 8 or 12-car units, and were later supplemented with an order for another 25 6-car trains – the Class 717 units, that would be used on the Great Northern line. In the end these new trains replaced no fewer than 6 older designs, from the Class 319 to Class 466.

Currently the only other ETCS Level 2 equipped and – well almost operational – trains are the Class 345 9-car trains for the Crossrail line. These actually began running in June 2017, and used at the outer ends, on the Great Eastern and Great Western main lines, as ETCS implementation is completed. In the Crossrail case, the trains are based on Bombardier’s “Aventra” design, but, unlike Thameslink, they are equipped for 25kV a.c. operation only, with no 3rd rail contact shoe. The Crossrail trains also carry equipment that allow them to use the TPWS warning system devised as a ‘halfway house’ towards ETCS in the 1990s.

Back in 2018, the DfT produced an 8-page implementation plan/technical spec for interoperability – the Control, Command System (CCS), under the slogan “Moving Britain Ahead”. On Page 4 of that document it states that the “Class B System”, which is the old “Halfway House” platform of TPWS from the late 1990s is supported by an industry wide spec. It also states that migration to ETCS will be on a “business led” basis, and implies that the “Class B System” will continue to be used in the UK.

“This specification defines all the required functionality and performance in a way which does not constrain the market to any particular supplier.” 


When ETCS was being promoted in the late 1990s/early 2000s, and when it was to be rolled out on the West Coast Main Line, in a phased manner, there were still multiple suppliers of ETCS equipment – whether for Level 1, 2 or 3. Not sure that still holds, but certainly the technology has progressed – perhaps the primary objection to speeding up its rollout is the rolling stock problem, and retrofitting to the large fleet of older vehicles. It’s great that it has been implemented for Thameslink, and there are still plans to implement – but TPWS was only intended to have a 15 year lifespan in 1999.

Following a review in 1999 of Railtrack’s West Coast upgrade, the approach to implementing train control through an ETCS platform was not progressed in the original manner, and it was recommended a more piecemeal approach, as an overlay to existing systems was taken. That is one of the ways in which ETCS can be implemented, with no need for a ‘big bang’ approach, and all that that would involve both technically, operationally, and S&T and driver training.

So, you might say, the UK’s “Digital Railway” is getting there, to misquote an old British Rail advertising slogan – but it will be sometime yet, before that objective is realised. In truth, some of us may not even be here to see that…… ah well.

-oOo-

TPWS

TPWS Feature coverClick on the image opposite, which will take you to a short feature written in 2001 about the implementation of TPWS – the UK’s initial step towards a full ERTMS/ATP train control system.

 

 

More Useful Links:

 

 

 

Deltics in Retrospect – Part 1

Standard

The DeItics, or rather the 22 locomotives originally designated English Electric Type 5 Co-Co diesel-electric, over a working life of more than twenty years became top favourites with all rail enthusiasts as they carried out the express passenger duties on the East Coast Main Line. And yet, initially, the design was not in tended for the Eastern Region at all, but the London Midland. Following the highly successful operation of the prototype Deltic locomotive, on LMR and ER metals, it was decided to place an order with English Electric for a production version. In essence this retained the twin I8-cylinder ‘Deltic’ engines of the prototype in a stretched body, with a number of other detail modifications, providing BR with what was at the time the world’s most powerful single unit diesel locomotive.

Deltic at NRM large_CD040355

The original “Deltic” prototype Photo courtesy Science Museum Group Collection © The Board of Trustees of the Science Museum Descriptions and all other text content are licensed under a https://creativecommons.org/licenses/by/4.0/

The first three production Deltics appeared in March 1961 and were allocated to the Scottish, Eastern and North Eastern Regions respectively. They were numbered D9000-02 in the then current numbering scheme. They were the result of six years running experience with the prototype; which remained the property of English Electric until its withdrawal and preservation in the Science Museum in 1963. The prototype had experienced only minor problems during the 400,000miles it covered in service, almost all of which centred around the Napier ‘Deltic’ engine. It was in this, in fact, that the unique nature of the Deltic locomotive was contained. The power unit was developed from a design prepared for the Admiralty in the early 1950s for its ‘Dark’ class fast patrol boats – a lightweight two-stroke diesel, opposed piston, water cooled engine. The cylinders-eighteen in all – were arranged in banks of six around the three sides of an inverted triangle – hence the Deltic name. Happily, the engines installed in the rail version had a much more successful career than those for the Royal Navy.

Original Deltic in Preston Works

Prototype Deltic in the erecting shop at Preston Works in 1956 – almost complete. © Rodger Bradley/GEC Traction Collection

The genesis of the ‘Deltic’ design was outlined in some draft notes on English Electric’s history prepared for GEC Traction’s publicity department around 1970, and included this summary:

1952

The development of a completely new ultra lightweight high speed 2-stroke diesel engine by D. Napier & Son, initiated an investigation 
into the traction potential of the new engine. In due course emerged the parameters for the design of a revolutionary single-unit diesel-electric locomotive of a power substantially greater than existed at the time (or 
for some years after it’s subsequent introduction).

Alongside the production of well established designs for export the prototype began to take shape, finally going into proving service on the L.M.Region of B.R. in 1956, the most powerful single-unit d.e. loco in the world with the highest power/weight ratio. With 3,300 hp from its two 18-cyl Napier engines, the “Deltic” loco weighed some 108 tons, max. axle loading – 18 tons.

During extensive service trials, speeds of well over 120 mile/hour were reputed to have been reached (unofficially), due, principally to the extremely smooth riding of the loco under which speeds downgrade could build up without the rougher riding more normally associated with speeds around 100 mile/hour at that time.”

The notes went on to highlight the steady development of English Electric’s diesel engines and its rail traction success. The production “Deltic” locomotives went on to become legends on a par, if not exceeding that of the Gresley or Stanier pacific steam locomotives.

Teething troubles in the design were basically the result of its transfer to rail traction use, and for the prototype, in addition to the two engines it carried, no less than three were maintained as spares. This was partly for test purposes, and partly to seek out the cause and cure for major problems of erratic valve operation. On the locomotive, with two engines, should one fail completely, it was still possible to move using only the one remaining engine.

Ironically, the prototype Deltic was withdrawn from service and returned to the Vulcan Foundry in the same month the as the first production units appeared. A piston failure occurred while the locomotive was working a Kings Cross to Doncaster service, which badly damaged one of the engines, and during March, the power plant, train-heating boiler, traction motors and control system was removed. It was planned to scrap the remaining shell, before the proposal to display it in the Science Museum was made – and fortunately this proposal was successful.

Deltic Prototype from Dec 1955 BR LM Region Magazine

The prototype as portrayed in the December 1955 issue of the London Midland Region Magazine – worth noting is the statement at the foot of the caption, stating that it had been built for export.

The table below gives the leading dimensions and other principal details of the 22 Deltic locomotives, in ‘as built’ condition.

Deltic leading dimensions

* Although when introduced, all the Deltics were fitted with both air and vacuum brake equipment, the latter being required since a majority of the passenger stock was still vacuum-fitted. The air brake equipment was for loco use only, and in 1967-8, the entire class was fitted with train air brake equipment.

DE:5001:1

The BR weight diagram of the production series Deltics, in original condition and running order.

Mechanical Details

(1) Power Equipment and Transmission

The two engines fitted into each locomotive were high-speed two-stroke diesels, each of which developed 1,650hp from eighteen cylinders. The design comprised three banks of six cylinders arranged around the sides of an inverted equilateral triangle, with all the piston heads opposite one another. This meant that instead of having the main crankshafts in the conventional position at the base of the engine, they were positioned at the three apexes of the triangle.

Deltic Engine ViewsThis complex construction, as previously mentioned was a development of a design produced by Napier for the Admiralty. In fact, the rail traction version, designated type D18-25 maintained the same size cylinders as some of the more powerful marine types, which in the 1950s had reached outputs exceeding 4000hp. One benefit gained from the triangular arrangement was the almost complete balancing of the reciprocating forces.

The pistons themselves were oil-cooled with an aluminium alloy skirt, and a dished alloy crown, screwed and shrunk onto the skirt. Three separate camshafts were fitted to the outer faces of the crankcases, with the fuel injection pumps mounted on the camshaft casings. Lubrication of the engine was based on a ‘dry sump system’, and all bearings and gears were supplied with oil under pressure.
The engines were constructed from three separate cylinder blocks and crankcases, secured by high tensile steel bolts – a method of construction reckoned to give a very strong and rigid structure. At the generator end of each engine a set of phasing gears was provided to drive a common output shaft. From the phasing gearcase, two flexible shafts passed through the uppermost crankcases to drive a centrifugal, double entry scavenge blower. The 5 1/8 in bore cylinders were fitted with steel ‘wet’ type liners with nine exhaust ports arranged around part of the circumference at one end of the liner, and 14 inlet ports around the full circumference at the opposite end.

Deltic D9001 - Vulcan Works Photo March 1961

D9001 the second of the class seen here fresh from the paint shop at the Vulcan Foundry works in March 1961. Sporting the two-tone-green livery and BR’s lion and wheel crest on the body side, with white-framed cab windows. © RPB/GEC Traction Collection

The generators attached to the output shaft of the phasing gearcase were self-ventilated DC machines, with a continuous rating of 1,650 amps at 660 volts. The phasing gearcase output shaft to which the armatures were attached rotated at 1,125rpm – the speed being stepped down from the crankshaft speed of 1,500 rpm. The auxiliary generators were mounted above the main generators and driven by a take off shaft from the phasing gearcase at 1 2/3 the crankshaft speed. The 110-volt supply was used for excitation of the traction generator field coils, lighting and various ancillary circuits.

With both engines in operation, the load was shared between the auxiliary machines, and the main generators were connected in series to supply the six traction motors. Should one power unit fail, the system was designed to provide full tractive effort, but at only half normal road speed. The six English Electric Type EE 538 traction motors were nose suspended, axle hung machines, driving the respective axles through a pinion mounted on the end of the motor armature shaft, and a gear wheel on the axle. The motors were force ventilated, from blowers mounted in each nose end, and electrically connected as three parallel groups of two motors in series.

In order to improve the speed characteristics over which full locomotive power was available, two stages of traction motor field weakening were provided. Engine cooling was by means of two roof mounted radiator fans, each engine having a pair of fans driven through gearboxes and cardan shafts with universal joints.

(2) Control systems

Control of engine speed was by means of air pressure actuators acting on the spring loading of the engine governors. Excitation of each main generator was altered through the load regulators – multi contact rotary switches. The opening and closing of the contacts was via the engine governor and oil driven vane actuator. This in turn varied the resistance in the main generator field circuit, keeping the respective engine at full load for that specific position of the power handle.

All auxiliary circuits were supplied at 110volts, for the operation of pumps, blowers, compressors, etc. An electrical control cubicle was provided behind each cab bulkhead, and housed all the principal circuit protection devices. General protection devices included automatic correction of wheel slip, which involved a slight reduction in traction motor voltage and application of sand.

This arrangement for controlling wheel slip was also in experimental use in 1961 on the 2000hp English Electric Type 4 No D255.

In the event of high cooling water temperature, or low lubricating oil pressure, the engine affected was shut down automatically. Faults such as these would be indicated on the control desk in the driving cab, together with boiler shut down and general fault lights. The general fault light was linked to secondary fault indication lights in the engine compartment detailing particular faults, such as traction motor blower failure, low water or fuel level. The low fuel level indicator meant that enough fuel for only 50 miles of running remained.

Grey Folder GEC - 1 5

Just a couple of years after the first production locomotives entered service – DP1, the original ‘Deltic’ was presented to Science Museum in September 1963, after 45,000 miles running. This view was taken on the day of the presentation.       (c) GEC Traction / RP Bradley Collection

(3) Bogies, Running Gear -General Constructional Features

The bogie main frames and bolsters were fabricated assemblies with the headstocks riveted to them. The general arrangement was similar to the prototype locomotive, though the wheelbase at13ft 6in, equally divided, was shorter. Underhung equalising beams of forged steel were fixed to stirrups incorporated in the axlebox assembly, with the stirrups and equalising brackets being provided with manganese steel liners. Similarly, liners were fitted to the wearing faces of the roller bearing axlebox guides, bolsters, side bearers and centre pivots. The load was transmitted to the bogie through the bolster side bearers and four nests of coil springs to two spring planks suspended by swing links from the bogie frame. Dampers were fitted between the bolster and spring planks. Four pairs of coil springs distributed the load from the solebar to the equalising beam.

Deltic in build at Vulcan_RPB Collection

A Deltic bogie alongside the body framing for one of the class in build at the Vulcan Foundry works, at Newton-le-Willows. All 22 were built at Vulcan between March 1961 and April 1962.    © RPB/GEC Traction Collection

This design of swing bolster bogie was also fitted to the English Electric Type 3Co-Co locomotives, and in June 1961,fractures were discovered in the transom webs of two locos, and as a result all locos with this type of bogie were withdrawn whilst a modification was made. This involved the provision of thicker gauge steel for the particular component, and no further trouble was experienced from this source on either the Type 3s or the Deltics. An interesting arrangement of ducting for traction motor cooling air was used, involving a flexible connection to two of the motors through the hollow bogie centre via the bolster, with similar ducting and flexible connections to the third motor. Clasp type brake rigging was fitted, and could be operated directly through the driver’s air brake valve, or operation of the vacuum brake on the train would cause a proportional application of the loco’s brakes to be made. In1967-68 all the Deltics were equipped with a train air brake system for working the latest stock, including air conditioning.

The underframe and body framing was designed as a load bearing structure, built up from cold formed steel sections and carried on two centrally positioned longitudinal members, and rolled steel channel solebars. A steel plate decking was welded to the top of the underframe with wells under the engine/generator units. All exterior and interior panelling was welded with joints ground flush. Fibreglass insulation was provided between the bodyside panels and in the cab, reducing noise and temperature variation. A more than usual proportion of fibreglass was used in the Deltics, with sections being adapted for battery and sand boxes, main cable ducts, instrument panels, cab and equipment compartment doors. The underslung fuel and boiler feed water tanks were welded up from light alloy sheet, and carried between the bogies. Water tanks were insulated and fitted with heating coils. A characteristic steam locomotive fitting was also provided on these advanced diesel locomotives – a water pick up scoop for use on troughs fitted between the rails.

Basically, the body could be divided into five compartments, which were as follows: No 1 end cab, engine room, boiler compartment, engine room, No 2 end cab. In front of each cab, a nose compartment housed various items of equipment. At the No 1 end these included two exhausters, CO2 fire extinguishers and a traction motor blower and air filter. The nose end in front of the No 2 cab – in addition to the traction motor blower and fire fighting appliances – also housed a toilet and the air compressor. In each case, in view of the height of the nose, both Driver and Second man’s positions were on a raised platform within the cab proper, which was provided with an access door on either side. Due to the restriction of space caused by the intrusion of part of the control cubicle into the cab, the two outer doors were sliding, whilst the engine room access doors opened into the cab.

The engines were positioned in. the engine compartments so that the generators faced outwards, ie, towards the cab, and separated by the train-heating boiler. This latter occupied a space12ft I Din in length at the mid-point of the locomotive. It was a Spanner ‘Swirlyflow’ Mk II, with a steaming capacity of 15001b/hr.

D9005 - The Prince of Wales's Own Regiment of Yorkshire copy

D9005 ‘The Prince of Wales’s Own Regiment of Yorkshire’ on a typical high-speed service on the East Coast Main Line in the 1960s. The change when compared to later 1970s and 1980s, when HST sets were used, and today, with electrification is quite dramatic.                               © RPB/GEC Traction Collection

Follow this link for Part 2 – Build & Operations

Further reading & Useful Links:

British_Rail_Class_55  (Wikipedia)

The Deltic Locomotives of British Rail – Brian Webb.  Pub. David & Charles 1982; ISBN 0-7153-8110-5

 

IMG_9395
The Deltic Preservation Society  Screenshot 2019-09-26 at 15.46.24

 

 

-oOo-

Coal Dust Powered Steam Engines

Standard

In 1919, ‘The Engineer’ carried a short reference in its January 13th issue to experiments in using ‘coal dust’ in locomotive fireboxes, describing them as powdered fuel engines:

Of the Great Central powdered fuel engine we can at the moment say no mote than that we hope before long to place a complete description before our readers. We dealt in our issues of Aug. 23rd and 30th, with the device employed on American locomotives for coal-dust burning, and we may note now that, whilst the general principles followed by Mr. Robinson are naturally not very different, the arrangement of the parts has been worked out afresh. The Great Central experiments are being watched with interest, and in view of the present desire to economise fuel, and the now proved fact that coal-dust can be used satisfactorily in locomotive fire-box, we shall not be surprised to see other engineers following Mr Robinson’s lead.

Original entry:

GCR coal-dust extract

To be honest, I’d not considered the idea of pulverised fuel as a source for steam locomotives before, considering the availability of considerable quantities of black coal from mines in the UK. There were perhaps other countries where good steam coal was not so readily available – the USA, Italy, Germany, and Australia – at least in some areas can be considered in that category. Aside from the efficiency, the complexity or otherwise, of burning, handling and distributing pulverised fuel, the economic conditions might well have a part to play in its use.

EPSON scanner image

The GCR’s experiment with coal-dust firing started with this heavy freight design, seen here in later years in LNER days.  This Sunday line-up of heavy freight locomotives is seen at Whitemoor Depot, March cc-by-sa/2.0 – © Ben Brooksbank – geograph.org.uk/p/2333255

Take the Great Central example above, that was in the immediate post First World War era, so along with compounding, it was seen as a way of improving the efficiency of motive power through the use of a wider range of fuels. Primarily though, a combination of increased fuel cost and poorer quality coal led to J.G. Robinson’s experiments in using coal-dust, or pulverised fuel. In addition to economics, there was a belief that this would increase the level of combustion, and hence operating performance and efficiency.

The first trials took place with four 8K Class 2-8-0 freight locomotives (later Class O5 in LNER days), between 1917 and 1924. The 2-8-0s were fitted with a bogie tender, housing a container holding the coal-dust, which was then fed to the locomotive’s grate, through pipes. The conventional fire grate and ash pan had been replaced by firebricks, and the fuel blown into the front of the firebox, using a system of fans, driven initially by a petrol engine, and later by a small steam turbine. The coal-dust used in these trials was recovered from colliery screens, and then dried before use on the locomotive, where it was mixed with air for combustion. Amongst the downsides to the use of this arrangement was getting the air to coal-dust mixture right, and the design and layout of the firebox, and even mixing the coal dust with oil (colloidal fuel) proved equally problematic.

The following is an extract from a book entitled “Brown Coal”, published by Australia’s Victoria State Electricity Commission in 1952 gives some insight into Robinson’s experiments on the Great Central.

“The Great Central Railway Company had fitted two locomotives for burning, respectively, pulverised black coal and colloidal fuel, the latter a mixture of about 60 parts of pulverised coal and 40 parts of oil. The pulverised fuel locomotive was in regular service on one of the heaviest runs in England, between Gorton near Manchester and Dunford, a distance of nearly 18 miles; it had to take, its place with a 500-ton load among similar trains; half a dozen of these were following trains, all of which were likely to be held up if the pulverised fuel locomotive failed. All this indicated the confidence of the Railways officials in the reliability of the pulverised fuel locomotive under everyday working conditions. During August 1921 the author had a run on the footplate of the pulverised fuel locomotive on a day when the general traffic conditions were as described above. Running, tests had bees made previously with the two converted locomotives and with another using lump coal; for maintenance of steam pressure and rate of travel on the heaviest portions of the run, colloidal fuel showed best and pulverised coal next best. Two separate engines on the tender, which was specially built for this service, drove the feed screw for the coal and the blower fan. Technically these experiments appear to have been quite successful, but the official view of the company was that there would be no commercial gain in pulverising its high-grade black coal.”

These experiments with alternative fuels were not uncommon on a number of railways in the early years of the 20th Century, as William Holden’s oil-fired examples on the Great Eastern Railway testify. However, in the UK at least, the likelihood of more ‘coal-dust fired’ locomotives was unlikely to grow, and indeed it did not, and remains a curiosity.

It wasn’t just the Great Central that was experimenting with pulverised, the Southern Railway carried out some work in the 1920s, based on those developments in the USA. In 1916, The New York Central converted a 4-6-2 to burn pulverised coal, and although not leading to great numbers of similarly fuelled steam types, these experiments were important in looking in detail at the performance, and efficiency of a steam locomotive over a wider range of fuel types. Brown coal and lignites were relatively common in European countries, such as Italy and Germany, where perhaps they were more fully developed.

In Germany, six of the Prussian “G12” Class 2-10-0swere converted to ‘coal-dust burning’ in 1930, but because of the considerable deposits of lignite/brown coal, a much softer coal with a high water content, new ‘coal-dust burning’ locomotives were being built in the 1950s. In the former East Germany, the state railway Deutches Reichsbahn (DR), constructed a pair of 2-8-0s in 1954/5 – the DR Class 25.10. The second of these was designed and fitted for coal-dust firing, and intended for both heavy passenger and goods workings.

Dampflokomotive 58 1894, BR 58

The first coal dust locomotive for Deutsche Reichsbahn (DRG), the former East Germany, with fuel from lignite. The performance was claimed to be significantly higher than a conventionally fired locomotive. The image shows the machine with tender and bunker. Bild 102-11602 / CC-BY-SA 3.0, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=5415387

The initiative started in the early 1920s in Germany, when the state railway organisation brought together the loco builders and the coal industry, and established a business to conduct research on the use of pulverised fuel for firing steam locomotives. This organisation – SLUG (Studiengesellschaft) – introduced the ‘Stug’ system, working with Henschel & Sohn, and at the same time a parallel development was being trialled by AEG. In both cases, the initial work was for stationary boilers. In later years, the system used in East Germany, was ascribed to the GDR’s Hans Wendler, and unsurprisingly known as the Wendler coal-dust firing system, which is the system used on the later DRG 2-10-0s.

Kohlenstaublok 25 1001 (BR 25)

One of the 20 Class 44 2-10-0 locomotives converted to coaldust firing in the 1950s, for work on lines in the Thuringian Forest region. Several of the class have been preserved, but sadly perhaps none of this particular variant.

During the 1950s, coal-dust fired steam locomotives continued to work in Germany, and in East Germany, the DRG converted 20 of the Class 44 2-10-0 heavy freight locomotives, of which almost 2,000 had been built since the 1920s. The system was ultimately replaced – largely due to the complexity of the fuelling system needed – by oil-fired locomotives, which were still in use in Germany in the mid to late 1970s, up until the end of steam traction.

The Southern Railway had built a new class of 2-6-0 locomotives, under its then CME, Richard Maunsell, for passenger duties, with two outside cylinders, weighing in at 110 tons, and developing some 23,000lbs of tractive effort. These new “U” Class moguls included number A629, built in 1928, and fitted with the German design of pulverized fuel system, supplied by AEG. The idea, unsurprisingly, given this was taking place during the great depression of the 1920s and 1930s, was to improve the operating efficiency of the steam engine. The trials took place on the London to Brighton line, and were used as a means of deciding whether it was more economical to convert to the poorer grade of fuels for steam traction, or implement widespread electrification. It was a short lived experiment, and brought to an end following a minor explosion that occurred when the coal dust came into contact with the hot sparks being ejected through the chimney. It was subsequently found that the blast of the steam engine in normal operation was drawing more coal dust/pulverised fuel through the boiler, without being burned.

31629

The experimental “U Class” 2-6-0 in later BR days as No. 31269

The locomotive itself was returned to normal coal burning in 1935, and renumbered 1629, and survived to BR days, and finally withdrawn from service in 1964, as BR No. 31629, and of course the Southern Railway embarked on major electrification schemes.

Another intriguing attempt at using ‘cheaper’ fuel, was to mix the coal dust/pulverised fuel with oil, and described as “colloidal fuel” in some quarters. In fact this too wasn’t a new idea, and had been used in ships during the First World War, when fuel supplies were becoming low. The idea seems to have been useful only where the mixture of oil and pulverised coal could be injected into boiler furnaces through an atomising burner, and the complexities of using such an arrangement on a steam locomotive footplate can only be imagined. Well on Britain’s railways in the 1920s and 1930s perhaps, since normal bituminous coal was readily available.

Curiously, the idea was raised again towards the end of the Second World War, in the UK’s parliament, when this observation was made in Hansard:

Locomotive Fuel - Pulverised Coal

But, in the end, even the UK’s experiments with oil-firing steam traction was not a success, and the increased march and takeover by diesel and electric traction was the death knell for this idea. But, elsewhere, trials and developments continued, including ‘down under’.

Australia – too little too late? As mentioned earlier, a study carried out on behalf of the State Electricity Authority of Victoria looked in great depths at the use of brown coal/lignites for boilers, and including steam locomotives. The work began in the immediate Post Second World War period, and was driven by industrial action on the New South Wales coalfields, and dwindling supplies of hard, black coal, and the coalfields in Victoria were exhausted. To combat this, for the railways, a large number of locomotives were converted to oil-firing, and the experiments with pulverised brown coal began by fitting the 2-8-2 freight locomotive X32 with the necessary ‘Stug’ equipment from Germany.

X32_dynamometer_car

X32, after conversion to PBC firing, on a test train with the VR and South Australian Railways joint stock Dynamometer car. Note plume of steam from the turbine motor on the tender, which drove a conveyor screw and blower to force coal dust into the firebox.          By Victorian Railways photograph – State Library of Victoria, Public Domain, https://commons.wikimedia.org/w/index.php?curid=23956450

This experiment was a success, and in 1951, the remaining 28 members of the class were converted to coal-dust, or pulverised fuel firing, and even one of the prestigious ‘R Class’ 4-6-4 passenger types – No. R707 was converted. The “R Class” was built by the North British Locomotive Co. in Glasgow, and worked some of Victoria’s prestige, express passenger services.

Whilst the experiments – and indeed operational running with the “X Class” and R707 was a success, time was not on the side of this technology, since dieselisation of Victoria’s rail system was rapidly gaining ground, and in 1957, the decision to abandon ‘coal-dust fired’ steam locomotives was taken. R707 was returned to normal lump coal as fuel, and was rescued and fully restored to operations as a preserved example of a fine class of steam locomotive.

58_1261-5_1 copy

The last of a pair of the ex-Prussian Railways design of 2-10-0 that were rescued for preservation. 25.281 is seen here at Potsdam in 1993.         By MPW57 – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3726331

 

-oOo-

Useful Links: