Coal Dust Powered Steam Engines

Standard

In 1919, ‘The Engineer’ carried a short reference in its January 13th issue to experiments in using ‘coal dust’ in locomotive fireboxes, describing them as powdered fuel engines:

Of the Great Central powdered fuel engine we can at the moment say no mote than that we hope before long to place a complete description before our readers. We dealt in our issues of Aug. 23rd and 30th, with the device employed on American locomotives for coal-dust burning, and we may note now that, whilst the general principles followed by Mr. Robinson are naturally not very different, the arrangement of the parts has been worked out afresh. The Great Central experiments are being watched with interest, and in view of the present desire to economise fuel, and the now proved fact that coal-dust can be used satisfactorily in locomotive fire-box, we shall not be surprised to see other engineers following Mr Robinson’s lead.

Original entry:

GCR coal-dust extract

To be honest, I’d not considered the idea of pulverised fuel as a source for steam locomotives before, considering the availability of considerable quantities of black coal from mines in the UK. There were perhaps other countries where good steam coal was not so readily available – the USA, Italy, Germany, and Australia – at least in some areas can be considered in that category. Aside from the efficiency, the complexity or otherwise, of burning, handling and distributing pulverised fuel, the economic conditions might well have a part to play in its use.

EPSON scanner image

The GCR’s experiment with coal-dust firing started with this heavy freight design, seen here in later years in LNER days.  This Sunday line-up of heavy freight locomotives is seen at Whitemoor Depot, March cc-by-sa/2.0 – © Ben Brooksbank – geograph.org.uk/p/2333255

Take the Great Central example above, that was in the immediate post First World War era, so along with compounding, it was seen as a way of improving the efficiency of motive power through the use of a wider range of fuels. Primarily though, a combination of increased fuel cost and poorer quality coal led to J.G. Robinson’s experiments in using coal-dust, or pulverised fuel. In addition to economics, there was a belief that this would increase the level of combustion, and hence operating performance and efficiency.

The first trials took place with four 8K Class 2-8-0 freight locomotives (later Class O5 in LNER days), between 1917 and 1924. The 2-8-0s were fitted with a bogie tender, housing a container holding the coal-dust, which was then fed to the locomotive’s grate, through pipes. The conventional fire grate and ash pan had been replaced by firebricks, and the fuel blown into the front of the firebox, using a system of fans, driven initially by a petrol engine, and later by a small steam turbine. The coal-dust used in these trials was recovered from colliery screens, and then dried before use on the locomotive, where it was mixed with air for combustion. Amongst the downsides to the use of this arrangement was getting the air to coal-dust mixture right, and the design and layout of the firebox, and even mixing the coal dust with oil (colloidal fuel) proved equally problematic.

The following is an extract from a book entitled “Brown Coal”, published by Australia’s Victoria State Electricity Commission in 1952 gives some insight into Robinson’s experiments on the Great Central.

“The Great Central Railway Company had fitted two locomotives for burning, respectively, pulverised black coal and colloidal fuel, the latter a mixture of about 60 parts of pulverised coal and 40 parts of oil. The pulverised fuel locomotive was in regular service on one of the heaviest runs in England, between Gorton near Manchester and Dunford, a distance of nearly 18 miles; it had to take, its place with a 500-ton load among similar trains; half a dozen of these were following trains, all of which were likely to be held up if the pulverised fuel locomotive failed. All this indicated the confidence of the Railways officials in the reliability of the pulverised fuel locomotive under everyday working conditions. During August 1921 the author had a run on the footplate of the pulverised fuel locomotive on a day when the general traffic conditions were as described above. Running, tests had bees made previously with the two converted locomotives and with another using lump coal; for maintenance of steam pressure and rate of travel on the heaviest portions of the run, colloidal fuel showed best and pulverised coal next best. Two separate engines on the tender, which was specially built for this service, drove the feed screw for the coal and the blower fan. Technically these experiments appear to have been quite successful, but the official view of the company was that there would be no commercial gain in pulverising its high-grade black coal.”

These experiments with alternative fuels were not uncommon on a number of railways in the early years of the 20th Century, as William Holden’s oil-fired examples on the Great Eastern Railway testify. However, in the UK at least, the likelihood of more ‘coal-dust fired’ locomotives was unlikely to grow, and indeed it did not, and remains a curiosity.

It wasn’t just the Great Central that was experimenting with pulverised, the Southern Railway carried out some work in the 1920s, based on those developments in the USA. In 1916, The New York Central converted a 4-6-2 to burn pulverised coal, and although not leading to great numbers of similarly fuelled steam types, these experiments were important in looking in detail at the performance, and efficiency of a steam locomotive over a wider range of fuel types. Brown coal and lignites were relatively common in European countries, such as Italy and Germany, where perhaps they were more fully developed.

In Germany, six of the Prussian “G12” Class 2-10-0swere converted to ‘coal-dust burning’ in 1930, but because of the considerable deposits of lignite/brown coal, a much softer coal with a high water content, new ‘coal-dust burning’ locomotives were being built in the 1950s. In the former East Germany, the state railway Deutches Reichsbahn (DR), constructed a pair of 2-8-0s in 1954/5 – the DR Class 25.10. The second of these was designed and fitted for coal-dust firing, and intended for both heavy passenger and goods workings.

Dampflokomotive 58 1894, BR 58

The first coal dust locomotive for Deutsche Reichsbahn (DRG), the former East Germany, with fuel from lignite. The performance was claimed to be significantly higher than a conventionally fired locomotive. The image shows the machine with tender and bunker. Bild 102-11602 / CC-BY-SA 3.0, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=5415387

The initiative started in the early 1920s in Germany, when the state railway organisation brought together the loco builders and the coal industry, and established a business to conduct research on the use of pulverised fuel for firing steam locomotives. This organisation – SLUG (Studiengesellschaft) – introduced the ‘Stug’ system, working with Henschel & Sohn, and at the same time a parallel development was being trialled by AEG. In both cases, the initial work was for stationary boilers. In later years, the system used in East Germany, was ascribed to the GDR’s Hans Wendler, and unsurprisingly known as the Wendler coal-dust firing system, which is the system used on the later DRG 2-10-0s.

Kohlenstaublok 25 1001 (BR 25)

One of the 20 Class 44 2-10-0 locomotives converted to coaldust firing in the 1950s, for work on lines in the Thuringian Forest region. Several of the class have been preserved, but sadly perhaps none of this particular variant.

During the 1950s, coal-dust fired steam locomotives continued to work in Germany, and in East Germany, the DRG converted 20 of the Class 44 2-10-0 heavy freight locomotives, of which almost 2,000 had been built since the 1920s. The system was ultimately replaced – largely due to the complexity of the fuelling system needed – by oil-fired locomotives, which were still in use in Germany in the mid to late 1970s, up until the end of steam traction.

The Southern Railway had built a new class of 2-6-0 locomotives, under its then CME, Richard Maunsell, for passenger duties, with two outside cylinders, weighing in at 110 tons, and developing some 23,000lbs of tractive effort. These new “U” Class moguls included number A629, built in 1928, and fitted with the German design of pulverized fuel system, supplied by AEG. The idea, unsurprisingly, given this was taking place during the great depression of the 1920s and 1930s, was to improve the operating efficiency of the steam engine. The trials took place on the London to Brighton line, and were used as a means of deciding whether it was more economical to convert to the poorer grade of fuels for steam traction, or implement widespread electrification. It was a short lived experiment, and brought to an end following a minor explosion that occurred when the coal dust came into contact with the hot sparks being ejected through the chimney. It was subsequently found that the blast of the steam engine in normal operation was drawing more coal dust/pulverised fuel through the boiler, without being burned.

31629

The experimental “U Class” 2-6-0 in later BR days as No. 31269

The locomotive itself was returned to normal coal burning in 1935, and renumbered 1629, and survived to BR days, and finally withdrawn from service in 1964, as BR No. 31629, and of course the Southern Railway embarked on major electrification schemes.

Another intriguing attempt at using ‘cheaper’ fuel, was to mix the coal dust/pulverised fuel with oil, and described as “colloidal fuel” in some quarters. In fact this too wasn’t a new idea, and had been used in ships during the First World War, when fuel supplies were becoming low. The idea seems to have been useful only where the mixture of oil and pulverised coal could be injected into boiler furnaces through an atomising burner, and the complexities of using such an arrangement on a steam locomotive footplate can only be imagined. Well on Britain’s railways in the 1920s and 1930s perhaps, since normal bituminous coal was readily available.

Curiously, the idea was raised again towards the end of the Second World War, in the UK’s parliament, when this observation was made in Hansard:

Locomotive Fuel - Pulverised Coal

But, in the end, even the UK’s experiments with oil-firing steam traction was not a success, and the increased march and takeover by diesel and electric traction was the death knell for this idea. But, elsewhere, trials and developments continued, including ‘down under’.

Australia – too little too late? As mentioned earlier, a study carried out on behalf of the State Electricity Authority of Victoria looked in great depths at the use of brown coal/lignites for boilers, and including steam locomotives. The work began in the immediate Post Second World War period, and was driven by industrial action on the New South Wales coalfields, and dwindling supplies of hard, black coal, and the coalfields in Victoria were exhausted. To combat this, for the railways, a large number of locomotives were converted to oil-firing, and the experiments with pulverised brown coal began by fitting the 2-8-2 freight locomotive X32 with the necessary ‘Stug’ equipment from Germany.

X32_dynamometer_car

X32, after conversion to PBC firing, on a test train with the VR and South Australian Railways joint stock Dynamometer car. Note plume of steam from the turbine motor on the tender, which drove a conveyor screw and blower to force coal dust into the firebox.          By Victorian Railways photograph – State Library of Victoria, Public Domain, https://commons.wikimedia.org/w/index.php?curid=23956450

This experiment was a success, and in 1951, the remaining 28 members of the class were converted to coal-dust, or pulverised fuel firing, and even one of the prestigious ‘R Class’ 4-6-4 passenger types – No. R707 was converted. The “R Class” was built by the North British Locomotive Co. in Glasgow, and worked some of Victoria’s prestige, express passenger services.

Whilst the experiments – and indeed operational running with the “X Class” and R707 was a success, time was not on the side of this technology, since dieselisation of Victoria’s rail system was rapidly gaining ground, and in 1957, the decision to abandon ‘coal-dust fired’ steam locomotives was taken. R707 was returned to normal lump coal as fuel, and was rescued and fully restored to operations as a preserved example of a fine class of steam locomotive.

58_1261-5_1 copy

The last of a pair of the ex-Prussian Railways design of 2-10-0 that were rescued for preservation. 25.281 is seen here at Potsdam in 1993.         By MPW57 – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3726331

 

-oOo-

Useful Links:

Electric Traction Revolution?

Standard

60 years ago on the 27th Nov
ember this year, Britain’s pioneer 25Kv a.c. electric locomotive was officially handed over to British Railways. Then numbered E3001, it
was to be the first of a long series of successful 
locomotive designs for the West Coast Main
Line (WCML). Within this series there have
 come to be seven basic designs, and a number of sub-divisions of the classes ALl to AL7. Although the last of these was never actually
 introduced under the old title of AL7, but
 designated Class 87 with the new “TOPS”
 locomotive codes, the family likeness remains
 very strong despite the detail alterations to the appearance of the latest type.

gec092

87005 – the final design of the 1st generation electric traction for British Rail, provided the motive power for the completion of the 400+ miles of route from London to Glasgow in 1974.

The choice of 25kV a.c. electrification to be used on B.R. was the subject of exhaustive investigation and comparative examination with other arrangements. Indeed, as there was no a.c. overhead
 main line contact system in regular operation, B.R. decided in 1951
 to convert the Lancaster-Morecambe-
Heysham section to 50 cycle, 6,600 volt, to
 evaluate the potential. The only alternative to 
an untried a.c. system was the l500v d.c. arrangements favoured by the former LNER for its Manchester-Sheffield-Wath and Liverpool St.-Shenfield lines.

However, by the time of the announcement in 1955 of B.R.’s multi-million pound modernisation and re-equipment programme, a not inconsiderable degree of experience of operation of an a.c. system had been acquired. It was perhaps the potential of the system, using 25,000V from the National Grid, rendering it economically superior to the d.c. system that finally won the day.

The decision was announced on 6th March 1956, that 25Kv a.c. would be the system of electrification used by British Railways on the WCML between London (Euston), Manchester and Liverpool, and additionally on the East Coast Main Line (ECML), between London (King’s Cross) and York and Leeds. The optimism generated through the Modernisation Plan for the electrification of two main routes was relatively short lived however. By 1959, it was seen that this would not be possible within the time limits proposed in the 1956 White Paper, and consequently a re-appraisal of the Modernisation Plan provided for the introduction of diesel
 traction “without prejudice to eventual electrification” on the main line where this was to be deferred. Another factor in this re-evaluation was the enthusiasm with which the private car, road building, and the removal of some restrictions on licensing of road haulage, and goods transport.

Another interesting statistic is the total route mileage electrified in Britain. There is a Wikipedia entry that states: “In 2006, 40%—3,062 miles (4,928 km) of the British rail network was electrified, ….”   But, in a BR publication (“Railway Electrification – A Discussion Paper”), dated May 1978, the route mileage electrified was 2,341 miles, or 21% of the total network.

So, does that mean that between 1978 and 2006, the increase in the electrified network was only 721 miles, and the 2006 total route mileage was just over 7,600 miles, but 38 years earlier the route mileage was 11,100 miles. A reduction in the size of the network of 3,500 miles, and at the same time adding just under 400 miles to the electrified main lines with the East Coast Main Line project – delayed from 1956.

There was of course a Department of Transport / BRB report on the subject of main line electrification in 1981, which offered a number of options to expand the network. From the perspective of the 25kV a.c. schemes, the final report’s “Option II’ – the ECML, Midland Main Line, Glasgow to Edinburgh, and Edinburgh to Carstairs was the option followed.   This was described in the report’s accompanying table as a “modest” expansion of the network. Ironically the recently completed electrification from Preston to Blackpool was included in the “Base Case”, and for completion in 1984 – a mere 35-year delay for that particular line. Slightly less of a delay was incurred by the Western Region (now GWR) main line out of Paddington. That scheme was included in the more advanced “Option III” ‘Medium Case’ for completion by 1996 to Bristol, and by 2002 to Plymouth – ah well, some of it got completed, but all has been hampered by the tragedy of privatisation.

87034 - William Shakespeare at Carlisle

Penultimate days of British Rail operations, with the classic motive power for the West Coast Main Line, here seen at Carlisle in the late 1980s.

 

 

Today we are still waiting on the possibilities of the HS2 / HS3 developments, and have pressed ahead in the last 10 years or so with the Paddington to South Wales, Midland Main Line, Glasgow to Edinburgh central belt, and a number of smaller connecting lines. These latter have mainly been around big cities; Manchester, Leeds, etc., with additional links to Blackpool, and specialist lines such as that connecting London with Heathrow Airport, or the Crossrail projects.

Looking back at the 1978 BR discussion paper, the current routes and electrified network was covered then by Options B and C for the Inter City Routes strategy. Had the strategy been implemented back then as Option C – the electrified network would have reached 5,300 miles, some 2,200 more than was achieved by 2006. However, the real issues that delayed the strategy was the lack of will to invest, and the mounting subsidies paid to BR during the later 1970s and 1980s.

So this was Richard Marsh’s plan in 1978:

InterCity Route Miles Strategy


In the nearly 40 years since, some work has been done, but the UK’s once extensive railway industry – both private and BR’s own workshops – has largely disappeared, and any achievements have been wholly dependent on the success of imported technology. One of the most telling observations in the 1978 discussion paper was in the concluding paragraphs, where the BRB stated:

“A railway system needs to be provided which enables our successors to run an economic transport system in the year 2000 and beyond If railway electrification is to be part of that, as now seems probable, a start needs to be made now. If the country has available the capital for regeneration of industry and preparation for the energy conditions of the next century, it would require only a very small proportion of this investment to convert the main public bulk transportation system to electric power.”

In that same booklet, it was pointed out that the UK was well behind in the proportion of its network that was electrified, coming 17th out of 21 countries, from Norway to Belgium and Japan.

Table A1

Today we are still waiting on the possibilities of the HS2 / HS3 developments, and have pressed ahead in the last 10 years or so with the Paddington to South Wales, Midland Main Line, Glasgow to Edinburgh central belt, and a number of smaller connecting lines. These latter have mainly been around big cities; Manchester, Leeds, etc., with additional links to Blackpool, and specialist lines such as that connecting London with Heathrow Airport, or the Crossrail projects.

By 2016/17 that position had changed, and the UK had slipped 3 places to 20th, or second from bottom, and yet the % of the network now electrified had risen to 33%.

Country Network Length Electrified length % Electrified
 Switzerland 5,196 5,196 100%
 Luxembourg 275 275 100%
Sweden 10,874 8,976 83%
 Belgium 3,602 2,960 82%
Italy 16,788 13,106 78%
 Netherlands 3,055 2,314 76%
Japan 27,311 20,534 75%
 Bulgaria 4,030 2,880 71%
 Austria 5,527 3,826 69%
 Norway 3,895 2,622 67%
 Portugal 2,546 1,633 64%
Poland 19,209 11,874 62%
Spain 15,949 9,699 61%
France 29,273 15,687 54%
Germany 38,594 20,500 53%
Russia 85,500 43,700 51%
 Slovakia 3,626 1,587 44%
 Hungary 7,945 2,889 36%
 Czech Republic 9,567 3,237 34%
United Kingdom 16,320 5,357 33%
Romania 10,774 3,292 31%

Source of table: (Wikipedia) List_of_countries_by_rail_transport_network_size

So according to this latest table, another 5,120 miles of route have been electrified in the UK since 1978. By far the longest route to receive its 25kV a.c. overhead contact system was the East Coast Main Line, from London (Kings Cross) to Edinburgh, which was completed in 1991 – so that was another 400 miles. After that, there was a plan to electrify the route from London (St Pancras) to Sheffield – although that’s only reached as far north as Leicestershire, before being controversially abandoned. The completion of the Channel Tunnel was the driver to construct a high-speed link between the tunnel and London (Waterloo), and with minor extensions added a further 100 miles by the time HS1 was opened in 2003.

The Western Region main line, or after privatisation, the GWR main line from London (Paddington) to Bristol and South Wales has only been completed in the last couple of years – but only as far as Bristol Parkway. The piecemeal, stop-start nature of progress on electrification of main lines since the mid 1990s has spectacularly affected interoperability across the whole network. The latest trains on the old Western Region main line to Bristol are hybrids, and have to operate as diesel trains in the non-electrified sections, obviously at lower speeds. The plan to electrify the main line to South Devon, Plymouth and possibly Penzance is not even on the horizon in the 21st Century.

The additional 4,000+ miles that have been electrified since 1978 includes the completion of the Edinburgh to Glasgow corridor, and the link to the West Coast Main Line at Carstairs, together with numerous other ad-hoc changes and extensions. This activity included work to extend the overhead out of London (Liverpool Street) into East Anglia; Cambridge and Kings Lynn.

In 1981, the Government published a final report advocating the case for main line electrification, and in a couple of key points made a recommendation that more, and not less electrification at a faster rate would offer best value for money. These are two of the key paragraphs that make those points:

Para 13 - 1981 DoT ReviewPara 14 - 1981 DoT Review

So how did we do? Well, not so good really.

Currently, in 2019, Crossrail – which links in to the GWR main line west of London – is still not complete, and the plans for a route between Oxford and Cambridge, and a north-south Crossrail2 are still only on the drawing board. The very latest activity on the London (Euston) to Birmingham – HS2 – is looking more likely to be cancelled than progressed, whilst the demand for increased electrification between Liverpool, Manchester, Leeds and beyond is growing by the day. The so-called Northern Powerhouse Rail is clearly an essential need, to link the economic centres in the North of England, which, between Liverpool, Manchester, Leeds/Bradford, and Tyneside/Wearside has a population of well over 7 million.

In February 2019, “The Engineer” carried out a poll of its readers to see what form of motive power would be 1st choice to replace the diesel trains – all of which will be gone by 2040. In the poll some 43% of respondents advocated full electrification.

Another 29% were in favour of batteries+hydrogen power, with another 12% advocating pure hydrogen powered trains.

If the recent progress of electrification is anything to go by, I doubt if any of these will progress very far, and we will, as usual be subject to the same uncertain, start-stop process that we have seen for the past 20 years. But, electrification is, and remains the only sustainable option – both in energy cost, and environmental impact.

So, 60 years on from the handover at Sandbach in Cheshire, in November 1959, we have come so far, but there is still a long way to go. The ‘Northern Powerhouse Rail’ proposals include some aspects of planned 25kV electrification from the 1950s, 1960s, and late 1970s, and the line from Manchester to Leeds is more than 40 years late. There has been very limited activity on rail, and especially electrification work over the past 20 years, and today’s ‘Northern Powerhouse Rail’ ideas are not a fitting reflection of the work completed in 1959.

Northern Powerhouse Rail Map

The lines shown on this map in light green are for new electrified routes, and the connection from Manchester to Leeds was identified as needing electrification almost 40 years ago – and it is still pending!

Useful Links:

 

Azuma_and_HST_at_Leeds_station_(geograph_6187255)

One of the new generation Azuma high-speed trains alongside one of the remaining IC125 (HST) sets at Leeds Station. By Stephen Craven, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=79978602 

-oOo-

 

 

 

The Premier Line

Standard

The London & North Western Railway Co., or “Premier Line” as it ultimately became known, was undoubtedly one of this Country’s premier railway companies, 
The LNWR came into existence following the amalgamation in 1846,of three of the principal west coast companies; the London & Birmingham, Grand Junction and Manchester & Birmingham Railways. The latter however did not fully extend to the limits implied in its title, occupying roughly the same route as the present
 Styal Line into Manchester Piccadilly, with its connection to Birmingham made over Grand Junction metals from Crewe.

The LNWR as it existed in 1846 was divided into Northern and Southern Divisions, with separate Chief Mechanical Engineers (CMEs) for each, not to mention individual livery styles and a number of other things. Wolverton and the Southern Division was in the hands of Edward Bury, from London & Birmingham days, later followed by McConnell. The Northern Division based on Crewe began life under Alexander Allan and Richard Trevithick, and later John Ramsbottom. From 1857 onwards however, the two divisions of the LNWR were merged, with Ramsbottom assuming overall control of the C.M.E.’s side from Crewe.

Lady of the Lake 2-2-2 from BR Magazine

Described as a “Problem” Class loco, No. 531 “Lady of the Lake” was built at the LNWR’s Crewe Works in 1859. The 2-2-0 design was produced when John Ramsbottom was Loco Superintendent. These were not so successful in passenger service as his      2-4-0 ‘Newton’ and the later ‘Precent’ derivatives.

Crewe itself soon assumed considerable importance as major junction, with completion of Robert Stephenson’s Chester & Holyhead line – the “Irish Mail Route”.  The old Grand Junction Railway was also connected northwards from Crewe with the Liverpool & Manchester and Wigan & Preston Railway. The Potteries too, through the North Staffordshire Railway, also had an interest in Crewe and the flowering LNWR. Further north there was the Lancaster & Preston Junction and Lancaster & Carlisle Railways, which later became part of the LNWR empire, though not for some years after the merger of 1846.

To the south, the LNWR was anxious to improve its communication with the capital, avoiding the need for a circuitous route from the manufacturing centres of the north through Birmingham, the Trent Valley line was constructed, though not without some opposition. The opposition to this line came initially from the LNWR itself, since the Trent Valley line was projected originally as a separate company, the LNWR taking it over after the light had been seen, so to speak. At Rugby, connection was made with the fast growing empire of George Hudson’s Midland Railway. In fact, until the Midland opened its own route to London and St. Pancras, that company was obliged to rely on the LNWR for through carriage of its passengers and goods, from the manufacturing districts of the East Midlands, and of course coal from the South Yorkshire Coalfields. There was much antagonism between the two companies at one stage, the Midland threatening to send its traffic to London over the metals of the rival east coast route of the Great Northern Rly. The LNWR was to encounter the Midland again in later years, much further north, with the building of the Settle-Carlisle line.

Motive power in the early days was diminutive, both by modern standards and those of contemporary companies, particularly the broad gauge GWR, whose massive outside framed single wheelers were twice the size of Bury’s bar-framed 0-4-0 and 2-2-0 types. Coaching stock was small by comparison too, though despite this, tales are told of double, triple and even quadruple heading trains out of Euston. About this ti.me too, there appeared from Crewe, one of the Company’s famous and unique locomotive types – the now preserved “Cornwall”, a relatively small engine with massive single driving wheels. Trevithick’s original design though was rather different to the form in which it is preserved today, essentially, in order to lower the centre of gravity, its boiler was carried below the driving wheel axle!

RPBRLY-36

Originally built by Trevithick in 1847, with a boiler beneath the driving axle, “Cornwall” seen here at Crewe, was rebuilt by Ramsbottom to follow a conventional layout. The loco was withdrawn from service in 1927 – some 80 years after building!

A nightmarish proposition for those required to maintain it no doubt. However, not all LNWR motive power was quite so freakish, some solid designs were produced at Wolverton under McConnel, known for some obscure reason as ”Bloomers”. Although again, they were really quite s all designs. In fact the Company was to be beset for many years with motive power of both small size, and in many instances poor performance. Ramsbottom’s ”Newton” class 2-4-0’s though small, were the forerunner of perhaps the Campany’s most successful design of steam locomotive until the early years of the 20th Century. I refer of course to the ever famous “Precedent” class, or as they became popularly known – the “Jumbos”.

Hardwicke - large_NRM_CT_936889

Webb’s early designs for the LNWR were very successful – before he got hung up on coimpunding – and No. 790 in the national collection at the NRM is the most famous of the “Precedent” Class. Building began of 166 of these engines in 1874, but the last of the class was not withdrawn until 1934. Photo courtesy NRM. licensed under a Creative Commons Attribution 4.0 licence

Probably the LNWR’s most “colourful” period coincided with the. arrival of the autocratic F.W. Webb as Chief Mechanical Engineer, and also with those of Richard Moon as Chairman and Capt. Mark Huish as Company Secretary. This trio were, even by Victorian standards, extreme in their attitudes and formidable in the wielding of their power and influence over all who ca.ne into contact, or conflict, with them. Two interesting stories are related over the activities of two members of this trio, though the one concerning Capt. Huish serves to underline his management methods, which, it appears, were learned whilst pirating the South China Sea, in pursuit of the lucrative, but illegal, opium trade; F.W.Webb on the other hand was of a more religious upbringing, his father having been a vicar. Christianity left its mark on this man in an obscure sort of way, for on an occasion whilst paying a visit to one of the workshops at Crewe, upon entering a building which had shortly before seen some form of accident, the area being thick with smoke and fumes, a workman had been overcome by these same fumes. On witnessing this, Webb is reported to have instructed the foreman to take the hapless individual outside, revive him and sack him forthwith. Perhaps in relating this incident, all the reasons are explained for Webb’s dogmatic and obstinate pursuit of the compound locomotive.

Greater Britain 2-2-2-2 Compound

Classic Webb era design of another of the less than successful compounds. The LNWR “Greater Britain” 2-2-2-2 locomotive No. 2525 (LNWR Crewe Works 3292 / 1891) The class consisted of ten of these 2-2-2-2 compound locomotives designed for express passenger work by Francis Webb in 1891.             Photo (c) Historical Railway Images

During this period, between say 1860 and 1900, there occurred the steady expansion of the Euston empire, stretching to the Scottish border and beyond, with the lliance of the Caledonian Railway to across the Irish Sea and the Euston owned Dundalk, Newry & Greenore Railway. Its steamship services ere surpassed by few others, whilst its main line, forever known as the West Coast Route was amongst the busiest and hardest to work of any railway in the country. The LNWR even managed to gain a foothold in West Cumberland, over the Cockermout, Keswick & Penrith line, purchasing the Whitehaven Junction Railway, and having operating agreements and joint ownership with the Furness, of one or two others. By 1870, the LNWR had indeed established a fair sized and extremely profitable railway. In size, with around 1400 miles of track, even this was to more than double by the end of its independent life, it was second only to the GWR; although its 
income was very nearly double that of the company with the broad gauge. It had also, the two important arteries of the Chester & Holyhead, acquired in 1858, and the Lancaster & Carlisle, leased, optimistically perhaps, for 90 years.

Locomotives figure prominently in any account of the “Premier Line” at this time, not surprisingly in view of the almost bewildering number of designs produced by Webb during the period from 1870 to 1903. Webb, as is well known, was an ardent and staunch a supporter of compounding as a means of effecting economies in locomotive operation as any other. He was also ably backed in this respect by the company Chairman – Richard Moon. Moon too was constantly striving for economy, tempered with the desire to maintain the position of the LNWR, and his own naturally, as one of the world’s largest, wealthiest and most respected joint stock companies. This he undoubtedly achieved during his tenure of that office, between 1861 and 1891. But it was perhaps Webb’s brilliance as a mechanical engineer that is remembered most, many of the innovations on this country’s railways in the latter half of the century were the product of his inventive genius. As an example, Adam’s ”Radial Tanks” on the London & South Western Rly. possessed a design of trailing axlebox which owed much of its development to Webb’s own ideas on the LNWR, to say nothing of his patented electro-mechanical interlocking lever frames for signalling!

As a locomotive engineer, Webb was probably second to none. Although remembered most for his largely unsuccessful pursuit of compounding, in his simple expansion designs of
the “Precedent” class 2-4-0 and “Cauliflower” goods 0-6-0’s there appeared successful designs of locomotive unsurpassed by many, many others. A great number of the latter survived nearly a century, passing into the hands of British Railways. But it was in the direction of locomotive design that his genius really let him down for not being content with developing simple expansion types that would perform the work required, he became obsessed with his pursuit of the compound locomotive. It was this principle really that consisted in costing the LNWR far more than any equivalent saving in fuel consumption. His designs, such as the “Experiment”, “John Hick” and “Dreadnought” classes were almost total failures, being both heavy on fuel and difficult to operate. Moreover, he later attempted to dispense with the idea of coupling the driving wheels together, with the result that whereas often the leading wheel could be seen turning in one direction, the trailing wheel would revolve in the opposite direction!

Despite this handicap in the motive power department the LNWR’s train services provided a level of punctuality second to none, smoothness and comfort in travelling too were unmatched, for a time at least, by any other company. In appearance, the ”Blackberry Black” of its locomotives, with their complex lining in red, cream, pale blue and grey made a pleasant, and in some of the grimier industrial areas, outstanding contrast with the “Purple Brown” and white coaches.

LNWR Coach Montage

Train speeds of the late Victorian period were not, on the whole, high, but certainly comparable with those of other railways. The crack Anglo-Scotch express, was the 2-0 pm “Corridor” from Euston, even so, it took some eight hours to reach the Scottish border from the Capital. Indeed, just prior to the famed ”Race to the North” of the late 80’s and 90’s, Edinburgh was reached in around ten hours of travelling – an interesting comparison with the 4.5 to 5 hours of today’s “Pendolinos”. These timings are roughly comparable to the speeds achieved soon after the Euston to Glasgow electrification was completed in 1974.  For the LNWR’s premier services, around 120 years ago, “slow”, would not perhaps be the right word – sedate would fit the bill much mare precisely.

Lens of Sutton - LNWR 4-6-0

Classic LNWR – and one of George Whale’s first designs after taking over as CME. The “Experiment” class 4-6-0 were built between 1905 and 1910. This class 0f 105 locomotives was intended to carry the ‘Scotch Expresses’ over the formidable Lancaster to Carlisle route, with the ascent of Shap to contend with.                           Photo (c) Lens of Sutton / R.P. Bradley Collection

Following the turn of the century, the first two decades saw yet another interesting period in the LNWR’s history, and one of considerable change. This relatively short period saw three changes of C.M.E., taking the Company up to amalgamation with the Lancashire & Yorkshire Railway in 1922, before finally merging into the LMSR on 1st January 1923. Train timings were improved somewhat after 1900, although by today’s standards, still sedate, with average speeds in the order of 55 mph for express trains. Passenger loadings were constantly increasing hence also the trailing tonnages hauled by the locomotives. It should be pointed out though, whilst we are now accustomed to reading accounts of performance with train weights cited in tons, in LNWR days it was customary for the guard to inform the driver that he had ”Eight equivalent to sixteen on”. This in effect was to say that there were eight bogie coaches behind the engine, each of which, by tradition was reckoned to be of equivalent weight to two standard four-wheelers.

The practice of quoting grain weights in terms of vehicle numbers continued for some time. Not so for the Webb compounds though, for no sooner had George Whale succeeded to the post of CME, than he embarked on a program of scrapping the three-cylinder passenger types, and modifying the 4-cylinder goods locomotives. The LNWR was desperately in need of efficient, powerful and simple, above all simple, locomotives. To this end, Whale saved the day, surprisingly quickly too, by all accounts the drawings for the ”Precursor” class 4-4-0 were prepared in March 1904 and quantity production was in full swing by September of that year. Whale also produced the “Experiment” class 4-6-0, a larger version of the “Precursor”. In fact, it has been said that both of these designs were developed from Webb’s own ”Precedent” class 2-4-0. Perhaps the last, and in some ways most outstanding LNWR locomotive type was produced under the guidance of C.J. Bowen-Cooke in 1913, the 4-cylinder 4-6-0’s of the “Claughton” class. This locomotive was the result of a series of comparative tests on the LNWR of a
 Great Western “Star” class 4-6-0, though in appearance, the “Claughton” was unequivocally a product of Crewe. The later products of the LNWR from Crewe, from various CME’s of the early Twentieth Century, were entirely successful in their work. The “Claughtons” particularly, for in fact it was on this design that the LMSR based its ”Baby Scot” or “Patriot” class 4-6-0s, some of which were “Claughton” chassis with LMS designed superstructures.

ClaughtonThe days following the 1914-18 war were something of a period of “marking time” for the LNWR, and Crewe Works, having been fully occupied with munitions work there was little prospect of recovery to pre-war levels of operation. In 1921,the Act of Parliament which sanctioned the formation of the four grouping companies, came into being, whilst the amalgamation in 1922 with the Lancashire & Yorkshire Railway was nothing more than a curtain raiser for the fun and games that beset the newly constituted LMSR in 1923. Having just emerged from a war, slightly the worse for wear; the LNWR was about to engage in another, with even greater consequences. But that, as they say, is another story.

A number of the LNWR locomotive designs lasted into the British Railways era, and even one of the “Claughton” 4-6-0s survived to be given BR No. 46004, and classed as 5XP – albeit with a new boiler fitted.  The smaller classes and freight designs from the Webb and Whale years lasted a very long time, and in 1955, the last of Webb’s 2-4-2 tank engines was withdrawn – and claimed a place in the BR London Midland Region magazine:

Last LNWR 2-4-2T - ex Precursor Dec 1955

At the time of the 150th anniversary of the ‘Rainhill Trials’ in 1980, the LNWR was represented by another Webb Stalwart – the “Coal” tank, the last of which had been withdrawn in 1958.  Still looking good in “Blackberry Black”.

RPB COLLECTION3-79 copy

Coal tank at the Rainhill 150 Celebrations in 1980. (c) R.P. Bradley

-oOo-

Useful Links:

 

LNWR Society Screenshot 2019-08-02 at 11.38.37

Science Museum Group

Screenshot 2019-08-02 at 11.43.42

 

 

 

 

 

 

Paxman – Probably the Finest Diesel Engines on Rails

Standard

The firm of Davey Paxman, then Ruston Paxman, and in its final guise of GEC Diesels Ltd was established in 1865, in Colchester, Essex.  Their original product line included agricultural machinery, steam boilers, portable steam engines, and stationary engines, with a wide range of applications in mind.

It was not until just before the First World War that they took an interest in the possibility of ‘oil engines’, with some of the early designs arranged horizontally, just like the company’s steam designs.  From around 1925 they began designing and building engines in the more conventional, vertical layout.

Paxman engined LMS No.1831 copy

What was to prove revolutionary in diesel traction’s use of quick-running engines, allied to innovative mechanical and ovcerall design. This view shows the very first diesel locomotive on British railways, built by the LMS, with its Paxman engine, on what was essentially a steam engine chassis.      Photo; Lens of Sutton

Only 5 years later, in 1930, as the LMS railway began its experiments with diesel rail traction, and the first diesel engine was installed in LMS prototype shunter No. 1831.  The engine was a 6-cylinder machine, developing 412hp at 750rpm, and designated type 6XVS.   The railway company constructed the mechanical portion of the locomotive, based around the frames of a steam engine, and other details, whilst the Paxman engine was the first rail traction diesel engine, installed in the first diesel locomotive on the standard gauge, for a major British railway company.

However, Paxman’s global reputation was based around quick-running ‘vee’ form diesel engines, and it began to make inroads in this area from around 1932, and with that step they were wholly successful, be it marine, stationary or rail traction.  Davey Paxman’s fortunes were assured.

The Second World War provided a pivotal platform for the technology,  and the Paxman 12TP engine – originally designed for a special assignment – was used in the British Landing Craft, and of course played a key part in the D-Day landings.  From that event 75 years ago, more than 4,000 Paxman 12TP engines were used in every assault operation carried out by Allied Forces in Europe.  This same engine design was refined for wider commercial use in the 1950s, including rail traction, and re-designated type RPH.

12RPH

The early 1950s saw the introduction of the YH range, direct fuel injection, and 4-valve cylinder heads.  The refinements of these designs, with ease of maintenance, provided an ideal platform for railway locomotives, with many examples used in branch line, shuntin, and in later develoipments for main line operations.  The quick-running 4-stroke diesel had certainly come of age.  By the end of the decade, a further development of these engines appeared in the shape of the “Ventura” range.

Paxman images 8 copyThe latest design was developed to meet the requirements set by British Railways, building on the design and construction of the RPL and YH engines, incorporating advanced engineering features, and competing with the best European builders were offering.  In fact, these engines were built under licence by Breda for Italian State Railways’ Class 343 locomotives, whilst further east in Ceylon (present day Sri Lanka), “Ventura” engines were fitted to a fleet of diesel hydraulic locomotives for shunter/trip and main line duties.

Paxman images 3 copyOn British Railways, the first of these new engines were fitted and trialled in one of the Western Region’s Swindon built “Warship” Class diesel-hydraulic locos – No. D830 ‘Majestic.  The “Ventura” engines were also retro-fitted to 20 of the North British Bo-Bo diesel-electrics, developing 1,350-hp at 1,500 rev/min engines, following the disappointing service experience with the locomotives’ original power units.  

D6123 from Paxman booklet

One of the NBL built Type 2 engines after refitting with Paxman engines proved much more successful.

Another order from British Railways, was for power unist for the last diesel-hydraulic type used on the Western Region – the Class 14 0-6-0 – together with 6-cylinder versions for the Southern Region’s “Electro-Diesels”.

Class 14 – The last Main Line Diesel Hydraulics

The experience with the “Ventura” design also provided background for the next step in the development of the Paxman range.  Paxmans’ working with British Railways and the MOD (Royal Navy), a new range of high-speed diesels, in the shape of the “Valenta” series were created.  These new engines were the same size and shape as the “Ventura”, but although of the same bore and stroke, gave 40% – 50% more horsepower.  

Paxman Valenta cutaway for HST

The heart of high-speed, the Paxman Valenta engine. Powerful and efficient too – a good combination for rail traction use.

It was these engines that were fitted to the HST, IC125, high speed trains that provided the mainstay for British Rail’s express passenger services for more than 45 years.  Some are of course still in service today.

HST in Sonning Cutting

On the Western Region, the HST sets – or IC125s were the mainstay of high-speed services. This is a typical view of 253003 running through Sonning Cutting between Reading and London Paddington. Photo; British Rail

The prototype HST was fitted with a 12 -cyl. Valenta 12 RP200L, charge-air cooled engine developing 2,250 bhp (UIC) at 1,500 rev/min.  Announced in 1970, the production sets would consist of a pair of power cars equipped with these powerful diesels at eaither end of a 7-car formation of Mark III coaches, which included two catering vehicles.  British Rail’s plan was to order 150 of these trains over a 5-year period, which it was suggested could be extended to 10 years up to 1985, starting in 1975.  They were set to work on both the London to Cardiff and London to Newcastle routes.

Paxman Prototype HST

This diagram shows the compact layout of the prototype HST power car. The buffers were of course not used on the production series.

In their HST guise, Paxman’s “Valenta” engines were definitely at the top of the tree.  They achieved no less than three world speed records.  The first was on 12th June 1973, when the prototype reached a speed of 143.2 mph between Northallerton and Thirsk on the East Coast main line.  The second, 22 years later, when on 27th September 1985 the Tyne-Tees Pullman, with Paxman power ran from Newcastle to London King’s Cross (268 miles) in under 2 hours 20 minutes, achieving a start to stop average speed of 115.4 mph.  Finally, just two years later in 1987, with power cars 43102 and 43104, the world speed record for diesel traction was broken again.  Over a measured mile between York and Northallerton, a speed of 148 mph was recorded, with peaks at just under 150 mph.

HST set leaving Edinburgh - January 1994 - RPB

Still on active service in the 1990s, 43113 is seen here running through the approaches to Edinburgh Waverley, but westbound through Prines Street Gardens.   (c) RPBradley

The longevity of their success suggests that Paxman high-speed diesels were probably the finest diesel power plant designed and operated on rail.

Further reading:

 

http://www.paxmanhistory.org.uk/paxeng34.htm

 

-oOo-

Ocean Mails at 100 mph

Standard

The magic three figures of 100 mph have held, and in some cases still do hold respect in so far as speed is concerned. Around the turn of the century, perhaps this was nowhere more apparent than on the railways. Competition for traffic between the railways had always been keen, none more so perhaps than
the intense rivalry initiated between the East. and West Coast routes to Scotland. In this, the principal combatants, the London & North Western and Great Northern Railways vied with each other to claim the honours in the days of the railways’ “Race To The North” in the l890’s. Yet despite some formidable feats of haulage and speed; none more so than that of the diminutive Locomotive, “Hardwicke”, not once was the three-figure barrier broken.

The LNWR had already had the experience of its rivalry with the East Coast companies under its belt, when later, a similar “event” took place in the South of England between the London & South Western and Great Western railway
 companies. This time, the competition was for the much-coveted carriage of the West of England traffic, and the Transatlantic Mails.The Great Western was in this case the underdog, having much leeway to make up on other railway companies following its enforced abandonment of the broad gauge in 1892, it being a relative newcomer to the design and operation of standard gauge locomotives and rolling stock at speed.

At the turn of the century, competition between the LSWR and the GWR was rapidly growing in intensity and although the GWR had the longer of the two routes between Paddington and Exeter (The LSWR route between Waterloo and Exeter was some 23miles shorter), the LSWR competition was hampered between that city and Plymouth, by having to use through running powers over the GWR branch line to that place.

The competition for this traffic had its effect on the locomotive department and brought about the development of new designs for express passenger engines. On the LSWR, William Bridges Adams passenger Loco, designs must rank amongst the most graceful of all typical British 4-4-0 types. William Dean at Swindon would not see the GWRleft with second best however, despite his advancing years and the doubts being cast on his abilities and the rising stature of Churchward. Dean’s latest passenger designs were excellent machines themselves, a very attractive 7ft Sins single driver type.  
In the late 1890’s however, Dugald Drummond as Chief Mechanical Engineer of the LSWR, in succession to Adams, introduced the T9 class 4-4-0, and by 1900 had assisted that company in gaining the upper hand in the competition for the West of England traffic; the improved timings of the LSWR services obviously
 increased their patronage. The GWR however were not to be outdone, and the reduction in mileage of the Western’s route to Exeter by construction of the cut-off lines, improved the balance in that company’s favour. Following which, with the introduction of 4-4-0 designs of the “Atbara” and ever famous ”City’ class, the seal was about to be set on the GWR’s prestigious West of England services.


3293 was the 2nd of the class and named after the GWR’s Chairman at the time.  Built in 1897, and used in common with Atbara and Duke class locos on the Ocean Mails runs.   (c) Historical MRS

The greatest degree of competition occurred on the working of the Ocean Liner Specials between Plymouth and London, and despite its initial handicap of 23 extra miles on the Paddington route, the GWR was not prepared to concede to the position of runner up. The competition between the two companies actually arose from the extremely fast Atlantic crossings made by the German owned Holland-Amerika line vessels. Crossing between New York and Plymouth, the Holland-Amerika line ships took away the Blue Riband from the British Cunard White Star line, whose crossings were made from and to Liverpool, whence the Transatlantic traffic was traditionally carried via the London & North Western Railway to London. Not unnaturally the potential traffic of the Holland-Amerika Line was attractive to both the GWR and LSWR, consequently both companies were anxious to improve their facilities at the Plymouth terminus in order to 
obtain this highly prized Transatlantic traffic. The GWR gave its Millbay Station a ‘facelift’, whilst the South Western built a special station for the ocean traffic at Stonehouse Pool. That the competition between the two companies was fierce, would possibly be something of an understatement, and in 1900 began to reach its climax. In that year, two rival Holland-Amerika ships raced each other across the Atlantic, the passengers and mails from the winner, the SS “Deutschland”, were conveyed from Plymouth to Paddington, a distance of 246.7 miles, in 4hrs 40mins, with two intermediate stops. An average speed of just over 52mph start to stop, may not seem particularly fast today, but over that distance at that time the fastest journey time was booked as 5hrs 5mins, an average speed of 48 mph, hence that particular run was a noteworthy 
achievement.

A dispute between the two companies over this traffic resulted
 ultimately in an agreement that from each transatlantic crossing, the LSWR would carry the passengers and the GWR the mails. In so far as the GWR was concerned, it had little, if any, of non-stop running and on the Plymouth route, rather surprisingly; its first attempt was made whilst conveying H.M. King Edward VII and Queen Alexandra! The ‘Atbara’ class engine used on the train put up an average speed of over 55mph between Paddington and Exeter, and without the usual requirement of a pilot engine running 15mins in advance of the Royal Train! The GWR’s experiment with non-stop running at ‘high speed’ was
 consolidated in 1903, with a second and even more spectacular performance, once again with the Royal Train!

Though not precisely the Royal Train, it was the advance portion of the up “Cornishman”, carrying the Prince and Princess of Wales (Later, H.M. King George V and Queen Mary). The engine was one of the new taper boiler ”City’ class 4-4-0’s; No.3433, “City of Bath”.  The train was booked non-stop from Paddington to Plymouth and covered the distance of 246 miles in 3hrs 53 ½ mins, giving the very high average start to stop speed of 63 ½ mph.

During the course of the journey, some remarkably high intermediate average speeds were recorded, such as the 73.4mph between Nailsea and Taunton on 
slightly unfavourable gradients. Actually, the average speed from Paddington to passing Exeter was just under 70mph (67.3,to be precise). The sustained high speed running to pass Exeter in 2hrs 52imins necessary with a 4-4-0 type, was indeed remarkable, and indicated the potential for free running and high speeds developed by the “City” class 4-4-0’s.

The final development of William Dean’s 4-4-0s for the high-speed West of England service was the “City” class, and this engine “City of Truro” was (depending on your railway loyalty perhaps) the first steam type to exceed 100mph.
 
By Hugh Llewelyn – 3717Uploaded by Oxyman, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=24390196

This level of high speed running by the GWR evidenced by these two runs, obviously led to even more intense competition with the South Western company. Some extremely fast runs were made with increasing regularity on both routes, and culminated in the first authenticated run made at 100mph. It should however be pointed out that despite the more or less general acceptance of that achievement, doubts as to both the reliability of the witnesses and feasibility of the locomotives of the day to achieve such a maximum have continued to be expressed, almost since the details were first published. Some of this doubt possibly resulted from the almost daily reports of incredible speeds achieved in the USA with 4-4-0 types, many of which claimed speeds of 120 and 130mph and more! Of course such speeds were impossible with the machinery of that time, but the unreliability of such reports probably influenced the partisan feelings of those who doubted the achievement of the GWR on May 9th 1904.

The record run of this particular Ocean Mails special from Plymouth to Paddington was carried out with two engines, that section from Plymouth, Millbay Crossing to Pylle Hill Junction, Bristol by the ”City” class 4-4-0 No. 3440,”City of Truro”, and from there a “Dean”, 7ft 8ins ‘Single’, No.3065,
 “Duke of Connaught”, hauled the train the remaining 118.7 miles to Paddington
in 1hr 39 3/4 mins. Though it was the performance of “City of Truro” over the adverse section to Bristol which received the honours, the performance of the Dean ‘Single’ was unquestionably spectacular. Perhaps even more so in view of Chunchward’s far sighted locomotive design policy was bearing fruit in the shape of some extremely powerful 4-cylinder 4-6-0 types, not to mention the solitary pacific, “The Great Bear”.  “City of Truro” took the special from Millbay
 Crossing to Exeter, almost all of this route against the grade, a distance of
 52.9 miles in 58mins, a very creditable performance.

There then followed the
 most remarkable section of the run, from Exeter to Pylle Hill Junction, where the 74.9 miles were covered in a time of 64 ¼ mins. On this section of the run a claim was made by a well-known train performance recorder of the day, C. J. Rous-Marten, for a maximum speed of 102.3mph, reached on the descent of the Wellington Bank.  Rous-Marten, who took details of the run, it has always been insisted, was required by the authoriti.es not to disclose details for fear of alarming the public. His records were however subsequently made public, but it appears that full details had already been disclosed of the run, the day following, in the Western Daily Mercury, and replete with a further claim for a speed of 100mph achieved between Whiteball Summit and Taunton.

Whatever the reasons for publishing or not publishing such details, it is now generally accepted that the three figure barrier was broken with this train, on the run referred to.
  The mails special was also followed on that occasion by a passenger special, in competition with a South Western special from Plymouth, Stonehouse Pool to Waterloo.  The GWR train made the run from Plymouth to Paddington in 264 mins, just 32mins slower than its record-breaking predecessor, and with a decidedly heavier train.


Not carrying the “Ocean Mails” anymore, but the legacy of the competition between the GWR and LSWR for this prestigious traffic lasted into British Railways days in the 1950s and 60s.  Here, the down ‘Cornish Riviera Express’ is entering Exeter St David’s behind typical motive power – a “King” class 4-6-0.
 
By Ben Brooksbank, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=15556548

As a result of these spectacular high-speed runs, emanating from the competition for traffic with the LSWR, the Great Western instituted regular non- stop services between Paddington and Plymouth on July 1st 1904.  This entirely new express service was booked to cover the distance, via the Bristol avoiding lines, in 4hrs 25mins; ultimately it became known as the “Cornish Riviera Express” – Which of course it has been known as ever since.

-oOo-

BBC thinks British Rail Did Not Work?

Standard

On the BBC’s Breakfast show today a comment was made when interviewing a representative from the “We Own It” campaign group and a Rail Delivery Group spokesman.

Screenshot 2019-04-30 at 11.22.12The interview at Birmingham New Street Station was reviewing a proposal by the RDG to end the current rail franchising arrangements.

The idea is patently going to be considered under the Government review. But during the interviews, this comment was made in closing the piece:

“We know British Rail did not work”

A clearly absurd statement – quite apart from being factually incorrect.

Whilst British Rail had many problems, it is plainly the UK privatisation model that has failed. The proposal from the RDG about “localising” control and regulation of commuter and suburban services is just regurgitating the PTE formats set up during BR days.

Half baked schemes – like open access services – are just that, half baked. These latest suggestions just seem to add complexity to an already complex and badly managed arrangement.

Disappointing from the BBC – what next, repeat the myth about curly sandwiches on trains and in refreshment rooms?!!

-oOo-

More Named Trains That Got Away

Standard

Another collection of named trains that had long histories, and which have long since disappeared, could be found on British Railway Western Region, running out of Paddington to Penzance, South Wales, and even Birkenhead on Merseyside in the 1950s and 1960s. Leafing through a copy of the 1961 timetable, no less than 18 such services were listed, one of which – “The Pines Express” – was also operated in concert with London Midland Region, whilst others covered the West Midlands, South and North Wales.

EPSON scanner image

No. D600 ‘Active’, the very first ‘Warship’ class Diesel-hydraulic, struggling up Dainton Bank with the ‘Royal Duchy’, near Newton Abbot in South Devon.. The train is the 13.30 Paddington – Penzance. (c) Ben Brooksbank Creative Commons Attribution Share-alike license 2.0

In South Wales, international services operated to Fishguard for Ireland, along with numerous cross-country trains to Chester, Liverpool, and further north to Durham and Newcastle.

As on other regions of British Railways, the naming of principal expresses was reinstated after the Second World War, and some new names were introduced, whilst others were withdrawn, then reinstated and dropped again. In 1961 the Western Region listed these:

WR Titled Trains 1961

BR Western Region Named Trains 1961 2 copyOf these 21 trains, more than half had disappeared by 1970, with no fewer than 7 being stripped of their title in 1965 including the third oldest – “The Torbay Express” – which had been operational since 1923. Three more disappeared in 1967, including the “Birmingham Pullman”, one of the newest prestige trains, and which had been operated using the “Blue Pullman” sets, built by Metro-Cammell only a few years before.

Far and away the oldest surviving named train in 1961 was, of course, the “Cornish Riviera Express”. In 1904, this was the first train booked to run non-stop to Plymouth, and was perhas the most prestigious of GWR trains, a status it carried through to BR days, with some of the most powerful steam locomotives of their day. From “City” class 4-4-0s like “City of Truro”, through to Churchward’s revolutionary designs from the “Star” class 4-6-0s, to “Castle” and “King” class. In BR days the latest, and unique “Warship” also hauled this train, together with “Western” class diesel-hydraulic locos and later still, HST sets. The Hitachi Class 802 Bi-mode trains now ply this same route. A service seemingly at the cutting edge of technology.

EPSON scanner image

Diesel-hauled Down ‘Torbay Express’ approaches Southall Station. View east, towards London Paddington; ex-GWR Paddington – Reading etc. main line. By 1960 main-line Diesel-Hydraulics were handling many of the principal Western Region expresses. Here No. D823 ‘Hermes’, a Swindon-built 2,200hp Type 4 B-B (introduced 8/58), is heading the 12.30 West of England express from Paddington, having just passed Southall Locomotive Depot, seen in the distance with the branch from Brentford coming up on the right. (c) Ben Brooksbank by CC BY-SA 2.

The schedule from the outset was tight, but after opening the shorter route via the “Westbury Cutoff” in 1906, it was possible to speed up the service to the west, with a start from Paddington at 10:30am, arrival at Plymouth was set for 2:37pm. Looking at the 1961 timings, these timings were still in force more than 50 years later. In the up direction, Paddington was reached from Penzance in 6hrs 40mins, with a 10:00am departure. The arrival at Paddington in 1961 was 4:40pm, which was only 5 minutes quicker than for most of its life.

Two trains that I remember seeing regularly were “The Royal Duchy” and “The Mayflower”, both destined to run from Paddington to the West Country, with the “Royal Duchy” starting life in January 1955, but needing consent from the Queen to carry the name. In the down direction, the train left Paddington for Penzance at 1:30pm, taking 7 ½ hours to reach Penzance, whilst in the up direction, Penzance departure was 11:05am, arriving at Paddington by 7:10pm. In the early evening, the down “Mayflower” left Paddington for Plymouth at 5:00pm, for a 10:20pm arrival, and in the up direction, Plymouth departure was 8:30am, with a 1:25pm arrival in Paddington.

Both of these trains carried headboards with the coats of arms of the Duchy of Cornwall, and the services received their names in te same year that the Western Region began to repaint its rolling stock in chocolate and cream. This individuality shown by the region, with its reference back to the former Great Western Railway lasted just over a decade, before the being consigned to history. The services carried on, but the names assigned to prestige trains like these were dropped in large numbers in the 1960s.

Cornishman BR Western Region Named Train 1961 14The West Country was served in total by 8 of these prestigious expresses, one of which “The Cornishman” originated in Wolverhampton – at least the BR service which was given the name officially in 1952. In fact, this had originally been a London to Penzance train, towards the end of the GWR’s ‘Broad Gauge’ period, starting life in 1890, and prior to the “Cornish Riviera Express” was the fastest GWR service to the far west. Starting from Paddington at 10:15am, Penzance was reached over the last miles of Brunel’s broad gauge tracks by 6:57pm – but this was before the ‘Westbury Cutoff’ and the route was via Bristol. After 1904, this particular service ceased to carry a name.

For the summer timetables of 1952, British Railways re-introduced the name for what was essentially a cross-country express from the West Midlands to the South West, taking in Wolverhampton, Birmingham, Stratford-upon-Avon, Cheltenham, Bristol and Penzance. In 1961, the train was still using Wolverhampton Low Level and Birmingham Snow Hill, for the down service, staring at 9:00am, through Cheltenham and Gloucester at 11:02am and 11:20am respectively. From Bristol at 12:15, the “Cornishman” made Plymouth at 3:15pm and finally, Penzance at 5:55pm.

Bristolian BR Western Region Named Train 1961One of the last of the West Country express services that was started before the Second World War was “The Bristolian”, which was initiated by the GWR in 1935, as a tribute to the centenary of the company. The GWR was proposed in the 1830s to link the cities of London and Bristol, and the new service was intended to link the two cities in as short a time as possible. In 1935, this was set at 105 minutes, some 15 minutes less than the previous best for the trip in the down direction. The down and up “Bristolian” used different routes – one via the original GWR main line to the city – 118.3 miles, whilst in the return trip to London, from Temple Meads, the train used the Badminton cut-off, from Filton Junction via Wooton Bassett. The ‘up’ service route was 117.6 miles – just a fraction shorter.

From Paddington, and a start at 10:00am, Bristol arrival was 11:45am, whilst in the up direction, arrival at Paddington at 6:15pm, from a 4:30pm start at Temple Meads, to maintain the schedule.  In the 1950s, the same 105 minute schedule was maintained – with “Castle” Class 4-6-0s, and despite an attempt to introduce a 100 minute timing in 1959, by 1961 the service reverted to its 105 minute schedule. However, with increased loadings, of 10 or even 11 coach trains, and the new 2,000hp diesel-hydraulic locos, the time from Paddington to Temple Meads was actually increased by 14 minutes to 119 minutes.

Sadly, despite the advent of the 2,700hp “Western” class diesels, the train lost its name in 1966, starting from Paddington at 8:45am and an arrival in Bristol at 10:30am, but the service continued until 1973 before its final demise.

Cheltenham BR Western Region Named Train 1961 9The West Midlands and Manchester & Liverpool was served by five express services in 1961, two of which dated from GWR days – “The Cheltenham Spa Express” and “The Pines Express”, which started life in 1923 and 1927 respectively.   Actually, the “The Cheltenham Spa Express” “The Cheltenham Spa Express” began life just after the First World War, with a service from Cheltenham and Gloucester timed to arrive in Paddington at 5:00pm. By the early 1920s, the Cheltenham service had been turned into the “Cheltenham Flyer”, with a view by the GWR to turn this into the fastest express service in the world. The claim was based around a 75-minute schedule from Swindon to Paddington, a distance of 77.3 miles, with a start to stop average of 61.8 mph.  This was essentially how the service remained, and with an accelerated timing to 67 minutes between Swindon and Paddington was the fastest train in the world in 1931, and after the timing was cut again to 65 minutes the following year, the train achieved an average of 71.4 mph. The service was briefly the fastest in the world, but by the start of WW2, that title was lost, as indeed was the name.

In British Railways time, the name “Cheltenham Flyer” never re-appeared, but in the 1950s, in common with many other expresses, BR chose to revive the “Cheltenham Spa Express”. In 1961, the down service left Paddington at 5:00pm, arriving in Gloucester at 7:17pm, and Cheltenham St James at 7:40pm. In the up direct, starting from Cheltenham at 8:00am, Paddington was reached by 10:35am, and was allowed 74 minutes between Swindon and Paddington – almost the same as the 1920s timing.  The “Cheltenham Spa Express” lost its title in 1973, although the service continued well into the 1980s.

Castle 7007 'Great Western'

GW Castle 7007 ‘Great Western’ has arrived with an express from Worcester and is now ready to be turned and serviced before returning westward. Paddington, UK. Negative scan. Taken in June 1962 Photo: © Nigel Kendall

Cathedrals BR Western Region Named Train 1961 12

Another service from Paddington to the West Midlands in 1961 was the “Cathedrals Express”, which was designed to serve Oxford, Worcester and Hereford – the cathedral cities. The train only received its name in BR days, in 1957, but services had been operated by the GWR over this route since around 1904, and was the only named train to carry a bishop’s mitre on its headboard.

Of course, the “Blue Pullman” diesel sets made their appearance in 1960, and both the “Bristol Pullman” and “Birmingham Pullman” made their debut arrival at Paddington at almost the same time, and in adjacent platforms. The Birmingham train took 2 hours 5 minutes in the up direction, departing from Snow Hill at 7:30am, to arrive at Paddington at 9:35am, whilst the Bristol service started from Temple Meads at 7:40am.   The service actually started from Wolverhampton Low Level at 7:00am, but in the down direction, the service only went as far as Birmingham Snow Hill, on a 115 minute timing, and a 25 minute turnaround in Birmingham before heading back to London at 2:30pm. These “Blue Pullman” services in 1961 were expanded, as an existing Pullman service to South Wales was converted to diesel traction.

Wales had no fewer than 6 main line express services in the 1950s and 1960s, although only one of these, the “Cambrian Coast Express” had been introduced before British Railways, which had begun life as a restaurant car service to the Welsh coast in July 1921. The “Cambrian Coast Express” in GWR days started in the summer of 1927, and was operated on Fridays and Saturdays only, leaving Paddington at 10:10am, for Aberystwyth, Barmouth and Pwhelli. In 1961, from a 10:10am start, the train’s route took it to Birmingham Snow Hill, Wolverhampton, Shrewsbury, Machynlleth and Aberystwyth, where it arrived at 4:15pm. To get to Pwhelli of course required a different train to carry you around the coast by way of Barmouth, Harlech, Portmadoc (Porthmadog), and Pwhelli, with a final arrival at 6:10pm. The return trip to Paddington started out at 9:45am from Aberystwyth, arriving, via Birmingham Snow Hill, in Paddington at 4:00pm in the afternoon.

Following the introduction of diesel traction, and the Pullman services in the early 1960s, to say nothing of Beeching, the route to the Welsh coastal resorts through Birmingham disappeared, and in 1967, so did the title of this train. However, not without a little irony – bearing in mind the GWR and LMS competing for traffic to Birkenhead and North Wales in the pre-war era – in 1986, this named train was revived, but started from Euston.

Blue Pullman Marshfield Mon. 4.4.73

This view shows one of the 8-car Pullmans in their final BR livery, in April 1973 passing Marshfield, Monmouth , only a month before their withdrawal. (Photo courtesy: George Woods)

All of the other titled trains running in 1961 were introduced in British Railways days – the “Red Dragon” started the naming of express trains off in 1950, and was quickly followed by the “Pembroke Coast Express” in 1953. A third service – the “South Wales Pullman” – which appeared in 1955, was introduced to take advantage of the increasing business traffic and commercial importance of South Wales. On its introduction it was a standard rake of Pullman cars, hauled by a “Castle Class” locomotive, but which by 1961, had given way to being supplanted by a new ‘Nanking Blue’ diesel Pullman set.

South Wales Pullman poster large_DS130673The “South Wales Pullman” left Paddington at 08:50am, arriving at Cardiff, in just 2hrs 50mins, at 11:40am, and by way of Bridgend, Port Talbot and Neath, arrived in Cardiff at 1:10pm – 4hrs 20mins from London. By 1973, it was no longer a named train, and no longer a Pullman service.

Lens of Sutton Britannia 70028

BR Standard ‘Britannia’ pacific 70028 “Royal Star” on one of its regular workings when the class were assigned to the Western Region. Photo: Lens of Sutton / RP Bradley Collection

The “Red Dragon” and “Pembroke Coast Express” have been described as being at opposite ends of the express train criteria – the “Red Dragon” was much slower, taking some 5hrs 54mins from Paddington to reach its final destination Carmarthen. This down train started at 5:55pm, whilst the up service fared little better, with a 7:30am start from Carmarthen, Paddington was reached at 1:00pm – a mere 5hrs 30mins. As a name, the “Red Dragon” was revived in BR’s ‘InterCity’ sector days – for a brief period – in 1984.

In the high speed category, the “Pembroke Coast Express”, which was introduced in 1953, laid claim to the fastest steam hauled service between London and Newport, and reached Swansea in 3 ¾ hrs from Paddington. Once again, this title disappeared from Western Region timetables in the 1960s, with the major regional and timetable changes – for the “Pembroke Coast Express” this meant that the name was withdrawn in 1963.

GWR Intercity Express Train edited

Hitachi Class 800 on the GWR main line – this is one of the 36, 5-car dual-fuel sets for use on the non-electrified as well as the electrified sections of the route. Photo: GWR – Creative Commons Attribution

Some of the main routes and services remain, but the names have long since gone, and now, finally, the Western Region main line has been electrified – around 60 years after the original proposals, and the familiar green livery. (I know it’s not the same.) The motive power – well fixed formation train sets, now in hybrid form as well – all look similar, so is it maybe time to re-introduce some individuality?

-oOo-