Bavarian Pacifics & More

Standard

Some years ago, whilst on holiday in Munich, we were walking through the Englischer Garten park in Munich – a huge open space in the city – and many years later I discovered that the area was the original home of the firm of J.A. Maffei, and built many 100s of steam locomotives.  From these works emerged a couple of well-known examples, such as the S 2/6 and S 3/6 designs for the Royal Bavarian State Railway.  The S 2/6 was the holder of the German speed record for steam traction – 154.5 km/h back in 1907, whilst a year later, the Class 3/6 arrived, two of which are preserved in the Deutsches Museum in Munich, and the Transport Museum in Nuremberg.

The unique Class 2/6 – a solitary example of a 4-4-4, and the predecessor of the Class 3/6 pacifics.
Alongside the S 3/6 pacifics, Maffei delivered a 4-6-0 version for passenger working between 1905 and 1907.

It was in 1908 that the firm of Maffei in Munich delivered its classic 4-cylinder compound pacific to the Royal Bavarian State Railways, with the class (S.3/6) numbering 145 in all by 1931.  These majestic locomotives were used on almost all of the principal services within and extending beyond Bavaria, they were indeed classic locomotives, undergoing a variety of minor design changes and mechanical improvements during their life.  In turn though they were the precursors of an equally successful simple expansion pacific, but with only two cylinders, one of which – No. 01 1104 was resident at “Steamtown”, Carnforth in England for a time, before returning to Germany.  This was originally DB Class “012″ 4-6-2 No. 012 104 which had been rebuilt with an all welded boiler and converted to oil burning.

Bavarian S 3/6 3634 in Munich’s Deutsches Museum – a classic early pacific, in the green livery of the Royal Bavarian Railways. Image: MPW57 – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3618526

The design of their precursors, the S.3/6 compounds was developed by Anton Hammel, Maffei’s Chief designer and, in turn, their appearance owed a lot to the adoption/inclusion of aspects of North American design practices.  Amongst these newer features was the adoption of bar frames, with a long, wide firebox.  All four cylinders drove the second coupled axle, with the two inside, high-pressure cylinders, set at a slight inclination, with the two outside, low-pressure cylinders set horizontal.  The majority of these locomotives were equipped with 6ft 0ins coupled wheels, although 18 of their number, built in 1912-1913 were given 6ft 6ins coupled wheels.  Known as “die Hochbeingen” (the Longlegs), one of this class was rescued for preservation in the Deutsches Museum in Munich.  Maffei constructed 127 Class S.3/6, whilst Henschel of Kassel built 18 under licence.  They were both successful and long lived, with the last of the class being taken out of service in 1965 – 57 years after their arrival in July 1908.  This classic Central European style was built on by the following Class 01 pacifics, with another version, Class 03 built with a lighter axle loading constructed throughout the 1920s and 1930s.

Captured on 11th September 1958, a Class 3/6 still hard at work. Image: Brooksbank – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=38764145
A lovely shot of preserved S 3/6 No. 3673 on a steam special in May 2014. Image: HintenRum – Königlich Bayerische Staatseisenbahn (K.BAY.STS.B.), https://commons.wikimedia.org/w/index.php?curid=34211703

In 1920, some 11 years before construction of the S.3/6 4-cylinder compounds had ceased, Deutsche Reichsbahngesellschaft (DRG) was in need of a new express locomotive type, to meet the changing traffic demands.  It was in the position of needing to either continue building a proven design such as the Bavarian. S3/6 or the pr. S10 – or alternatively to decide on a new construction.

So, DRG decided to pursue a new approach, by adopting standardisation with the intention of reducing maintenance costs on passenger workings.  In essence this resulted in stocks of spares being held at various depots across the network, so that repairs could be undertaken swiftly, by swapping out the failed component, and the loco could then be put back into traffic.

One of the DRG’s Class 01, no. 01 118, captured at at the German Steam Locomotive Museum, Neuenmarkt, Bavaria, Germany in 2010. Image: Bermicourt – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10529575

This was essentially how the famous BR 01 and 02 Class of pacifics appeared – Germany’s first ‘standard’ design.  Initially 10 of the Class 01 were built, and 10 of the 02 series – the difference between the two was that the 01s were 2-cylinder simple expansion, whilst the 02s were 4-cylinder compounds.  The idea was then to compare the performances of each and decide which best suited DRG’s express passenger services going forward – controversially perhaps it was the simple expansion Class 01 design that proved the most effective overall.  The stated intention of standardisation was to reduce maintenance costs, and despite the fact that the 2-cylinder design was less powerful and less economical than the four-cylinder compounds, the 01 Class won the DRG’s support.

No fewer than 231 of these locomotives were built between 1926 and 1938, mainly by AEG and Borsig, but also from Henschel, Hohenzollern, Krupp and BMAG.   Although strictly speaking, after the initial order for 10, another 221 were ordered, and with the 10 Class 02 compounds converted to 2-cylinder simples between 1937 and 1942, a grand total of 241 of these express locomotives took to the rails. The first 01 to enter service was actually 01 008, and which is preserved today in the Bochum-Dahlhausen Railway Museum.

Their axle load of 20 tonnes (19.9 long tons) was slightly less than the later British Railways ‘Standard’ Class 7 “Britannia” Class pacifics built a quarter of a century later.  In Britain though the idea of standardisation was thought of in a different way and was driven by differences between the engineering designs and workshops of the former private railway companies.  In Britain the idea being to standardise on the optimum component design produced by the ‘Big Four’ companies, so that valve gear design was adapted from the former LNER, with the larger boiler designs from the LMS.

The Class 01’s axle load of 20 tonnes restricted its use on a number of routes, and this began in the 1930s, along tracks that had been upgraded to take this increased axle load, and in the area around Berlin this required bridge arch strengthening work.  Compared to the Bavarian Class 3/6, which had a 16.8 tonnes axle load, they were significantly heavier, and the first 90 engines were sent to home depots from Berlin in the Northeast, across to Essen in the West, Hamburg in the North, and to Nuremberg in the South.  Unsurprisingly perhaps, this initial deployment covered the industrial north, whilst later distributions took the class to Cologne, Frankfurt, and Dresden.

The 01s were also modified during the various batches of locomotives built, which included changes such as providing electric lighting for headlamps, instead of gas, increasing the bogie wheel diameter to 1,000mm to enable higher speed, and increasing the braking effort with additional brake shoes.  In addition, changes to boiler tubes, smoke deflector designs, and smokebox locking were included in the pre-war modifications.

This is a superb shot of a Class 01 on the turntable at Dresden’s Steam Loco Festival. The photo was taken from the Nossen Bridge overlooking the locomotive shed of the Dresden-Altstadt Railway Museum. Image: Bybbisch94-Christian Gebhardt – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=39894093

The major changes, and rebuilding took place in the 1950s, which included such features as water pre-heating apparatus, yet another design of smoke deflector, and the inclusion of combustion chambers.  These were done as experiments on locos 01 042, 01 046, 01 112, 01 154 and 01 192.  Between 1957 and 1961, the then Deutsche Bundesbahn rebuilt 50 of the class with a new all-welded boiler, roller bearings, changes to the front end frames, cylinder blocks, amongst other modifications.  In the East, the Deutsche Reichsbahn in the workshops at Meiningen rebuilt another 35 of the class, also providing a new boiler, pitched higher, and fitted with a combustion chamber and preheater arrangement, along with a new cab and new smoke deflectors.

The class was retained in service in West Germany until 1973, and in East Germany until 1982, with numerous members of the class still operational as preserved examples, in Germany, Austria and Switzerland.

The 01s were a very successful design, and in 1988, the DB Transport Museum in Nuremburg obtained 01 150 for preservation in the national collection.  This locomotive was built by Henschel in 1935 and was still in service in the early 1970s, before being taken out of operation on November 13, 1973. 

It is beyond the scope of this brief look at a couple of classic German pacific types to provide more extensive detail – but we may return to the subject in a future post. 

https://www.dampflok.ch

https://dbmuseum.de/nuernberg/

https://www.oegeg.at

http://www.bayerisches-eisenbahnmuseum.de/index.php?lang=de

Videos Worth a Watch:

-oOo-

The UK’s Stations with the Most and Least Train Delays

Standard

Back in the days of British Rail, train performance figures were routinely published by the central and regional transport committees, which included a range of voices on the panel, and was independent of the railway operator. The details provided in annual reports covered passenger operations, disabled passengers’ facilities, bus-rail interchanges, design of rolling stock, and major projects including electrification. Funding was also covered, and the gradual reduction in PSO grants to local authorities, which led to a further run down of services, was a key feature of the 1980s in particular.

From a press release provided by The Compensation Experts earlier this month (November), an interesting set of statistics was provided to illustrate which stations had the most delayed services – missed their arrival time, or beyond the 1 to 15 minute threshold, but not cancelled. In that release, they make this observation:

“Unsurprisingly, the worst UK station for delays and cancellations is in London. If you want a quick commute, you should aim to avoid using City Thameslink at all costs. On average, an absolutely staggering 67% of all trains that pass through City Thameslink are delayed between 4pm and 6pm, with 66% being delayed between 7am and 9am.”

To illustrate the point they include this table:

As I referred to in an earlier post, access to detailed information is difficult to come by, through “official” channels, and obvious sources such as Transport Focus, and the ORR web sites are long on rhetoric, but short on readily available data. On the Transport Focus home screen, you have to scroll to the very bottom of the page to find a link to the “Data Hub”, which then takes you to another page, strewn with icons and images of various transport modes – then you click on the “National Rail Passenger Survey” – which gets you this image:

Not much by way of useful information about train performance, and none about puncutality. Previously, reports would include charts about the percentage (%) of trains arriving on time, or within 5 minutes, and so on – but with this source you have to delve a further 3 or 4 pages into “Advanced Analysis”. Then you can generate a spreadsheet to provide details of punctuality.

BUT – it does not calculate that data, it simply describes whether passengers were satisfied or dissatisfied with their journey.

Not a very useful source then if you are looking for details about train arrivals on or behind time, as happened in British Rail days. So maybe I misunderstand what the purpose of “Transport Focus” is then? Seems to be measuring whether a passenger was happy or unhappy.

So, where to go next?

The Office of Road and Rail (ORR) perhaps.

This can be a useful source, and they publish a PDF file online at 3 monthly intervals, but an important point has to be how punctuality is defined and recorded. The ORR use a definition of on time as either arriving ahead of the booked time or less than one minute late, but there is another measure described as te Public Performance Measure (PPM), which is defined as trains arriving early or up to 10 minutes after the scheduled arrival time. This is also classed as a punctuality measure.

So, if you aggregate train services from all operating companies, and you measure their arrival as punctual, you could say that 98% of all trains were punctual if your definition was early or on time, and up to 15 minutes after timetabled arrival.

All the results aggregated by the ORR for on time, or 1 minute late arrivals are published as a chart, and the example below shows these punctuality figures for the past 8 years. If option (c) is selected – trains arriving up to 15 minutes late – unsurprisingly trains can be said to be 99% punctual.

Train punctuality was also measured as % of arriving right time, or up to 5 minutes late. These were also grouped as either express trains or other trains, and further subdivided by region (equivalent to train operator today. It is interesting to note that in 1981 BR Eastern, Scottish and Western Region express train punctuality was 81%, 82% and 74% respectively. For other trains (this would include commuter services), these same three regions recorded punctuality figures of 91%, 93%, and 92% arriving on time, or no more than 5 minutes late.

Before the pandemic, the same services, allowing for arrivals up to 3 minutes late, were roughly the same in 2018/19 as they were in 1981 – fascinating.

Train Performance – No Data Available

-oOo-

Travelling by Rail is Now Fashionable

Standard

There was an advert on TV the other day, encouraging people to use the “National Railway Network”.  Odd, I thought, especially since passenger and freight services are run by private train operators, and pay a fee to Network Rail to use the tracks and infrastructure.  So, what is the purpose?

Well, blindingly obvious – it is to get people back on trains as their use has been drastically cut over the past 18 months by this awful Coronavirus Pandemic. 

National Rail enquiries have always used the old British Rail logo

Great idea – but given that the advertisement is to underpin Network Rail – which does not operate trains – and uses the imagery of British Rail from the 1970s and 80s, and they also use the double arrow logo, that was so closely associated with British Rail.

Before anyone mentions it, yes I do know that Nationalrail.co.uk is an online national timetabling service, and it has been using the double arrow symbol for years:

Selling travelling by train with nostalgia seems to be the subliminal messaging going on here – well not that subliminal if I can spot it!  This is what their ad campaign has been saying:

The latest marketing video aiming to convince people to get back on the trains also includes the old British Rail logo – it bears a remarkable similarity to the approach taken in the 1980s.

Anyway, I thought – indeed was told in no uncertain terms back when British Rail existed – that it was a failure, and privatising it was going to make everything so much better, and it would be profitable.   Well that was a mistake, an error, and misleading wasn’t it.  Since “privatisation” the public purse has been well and truly reduced by subsidising the loss making operators.

Still, the “Rail Delivery Group” – a bit like the old Railway Clearing House, or British Transport Commission of the 1940s and 1950s – appears to believe selling the idea on a “national” basis is the way forward, by going backwards with its message content.

Are they suggesting there is no other way forward than to relaunch British Rail?  Their slogan: ‘Let‘s get back on track‘, was created for Network Rail, which, as we know, does not run trains.  Or is it just that if the train operating companies were to come up with a marketing programme, it would need to involve 2 continents, 5 countries (excluding the UK), and 10 parent companies and more than 20 different operators!  Then, in turn there are the companies that actually own the rolling stock – the ROSCOs – there are 9 of them, and they are owned in turn by groups of banks and financial institutions in Canada, China, Germany, France and Australia.

The table below is just the passenger train operating companies – I think it’s relatively accurate, but I’ve excluded the Channel Tunnel, and Eurostar – neither of which are involved with this exercise – well, so far!

Parent CompanyTrain Operator
AbellioAbellio ScotRail (SR),  East Midlands Railway (EM),  Greater Anglia (GA) (60%),  Merseyrail (ME) (50%),  West Midlands Trains (WM) (70%)
ArrivaArriva Rail London (LO),  Chiltern Railways (CH),  CrossCountry (XC),  Grand Central (GC)
East Japan Railway CompanyWest Midlands Trains (WM) (15%)
Department for TransportLondon North Eastern Railway (GR),  Northern Trains (NR)
FirstGroupAvanti West Coast (VT) (70%),  Great Western Railway (GW),  Hull Trains (HT),  South Western Railway (SW) (70%),  TransPennine Express (TP)
Go-Ahead GroupGovia Thameslink Railway (GN, SN, TL),  Southeastern (SE) (65%)
KeolisGovia Thameslink Railway (GN, SN, TL),  Southeastern (SE) (35%)
MitsuiGreater Anglia (GA) (40%),  West Midlands Trains (WM) (15%)
MTR CorporationSouth Western Railway (SW) (30%),  TfL Rail (XR)
SercoCaledonian Sleeper (CS),  Merseyrail (ME) (50%)
Transport for Wales (Welsh Government)Transport for Wales Rail (AW)
Trenitaliac2c (CC),  Avanti West Coast (VT) (30%)

In the 1980s, British Rail were promoting a range of operational, financial and technology improvements and innovations, and included some quite sophisticated marketing too – but it seems that the benefits of rail are only seen clearly during a time of crisis.  Now, it seems transport is on a crisis of economic, financial and environmental proportions, and encouraging people to return to the train is highlighting the crises we are seeing today.

Back in the 1980s, it was “crowned” by the infamous “Serpell Report”, amongst whose chief proposals was the reduction of the national route mileage from 10,500 miles to an incredible 1,630 miles.  Thankfully this ludicrous report was consigned to the dustbin, despite the political climate encouraging the tarmac lobby with wild and weird ideas about converting rail routes into new roads, with one supporter claiming that railways had been anachronism since the pneumatic tyre was born.

The train that never was – well not until the arrival of the “Pendolino” in 2001, which adopted the same technology.
In the 1980s British Rail had a strategy, but it was undermined and overlooked by the transport politics of the day.

But, whilst that absurd plan did not go ahead, British Rail was left to “wither on the vine” in the 1980s, and a prophetic paragraph in the 1980 Rail Policy document indicated the options for the railway at the crossroads:

“A crucial decision has to be taken soon about the future of British Rail. BR must prepare to take either the path of progress by re-equipment and modernisation, or that of decline through a gradual but deliberate run-down of the system. We cannot continue as we have done in the past. We are reaching the dividing of the ways.”

It is easy to look back and say it couldn’t have been implemented, since the early 1980s – at the heart of BR’s “Corporate Plan 1981-85”, because of the dramatic effects of the economic recession.   As we discovered it was a deliberate run down of the system, and the 1990s privatisation was a straw clutching exercise, which, at the same time, saw the national economy clinging on to old fashioned notions of growth and development.

BR Engineering was at the forefront of adopting computer aided design technology, before it too fell victim of the retrograde steps that privatisation forced on the railway industry.

BR was being marketed on a number of fronts: new technology in train control and signalling, fibre-optic communications, computerised systems, greater electrification, expansion of freight services such as “Speedlink”.  For passengers there was the new High Speed Trains – InterCity 125 – and the prospect of the tilting Advanced Passenger Train (APT) – the latter ironically arriving 20 years later via Fiat in Italy, and Bombardier in Birmingham.

Plans for the Channel Tunnel were in hand in the Corporate Plan, and cost savings by replacing diesel traction with electrification were clearly identified, both for long distance and commuter services.  Dedicated high-speed lines to airports like Gatwick and Stansted, where air traffic was rapidly growing were factored into the mix, and whilst the options for less densely populated rural areas were less successful, efforts were being made to change.

Parcels and newspapers were carried by train over the longer distacnces 30 years ago, whilst now, 1,000s of small vans and lorries hurtling up and down the motorways carry that traffic in an unsustaianble way. Anothjer casualty of the backward steps that were implemented after privatisation.

Sadly, none of this was achieving much positive media coverage – the focus, whether broadcast or newsprint relied heavily on promoting expansion of HGVs, and private cars for long and short journeys – oh yes, and the apocryphal on-board catering of the curly sandwich and pork pie.  No thought whatsoever appeared to be given to the environmental impact – and yet less than a decade earlier, the oil crisis of 1974 – suggested there could be challenges ahead.

And yet, these ads seem to provide the same feel as the “Let’s Get Back on the Train” ideas:

Classic 1980s advert – still reaching to encourage us all to use the profitable InterCity services over those long distances. BR’s long distance services’ profitability helped to reduce the cost to the national budget of a national rail service.
I know not many people would recognise Jackie Stewart and Hattoe Jacques, but replace these two with Lewis Hamilton and Dawn French, and with today’s road traffic congestion, I think Dawn French would complete the journey hours before Lewis Hamilton got as far as paying the London congestion charge.

The latest marketing idea to get people back onto the train is likely to fail – not because people don’t want to – it’s because the pandemic and climate emergency has changed the focus, and perhaps those hoardes of parcel delivery vans are not so sustainable for future generations.

-oOo-

Almost Re-Nationalisation?

Standard

Well, well, the media have had a spectacular day today, observing and commenting on this radical reform of the railways – a new public body to oversee the running of the track, signalling, train control, stations, timetables, and ticketing, etc., etc.   Then they will be managing the awarding of contracts to train operating companies, to provide train services to those schedules – not to mention the exciting new multi-faceted tickets that (a) can be bought on the day of travel, and (b) offer greater flexibility to meet the UK’s new working arrangements.

Hmm – I guess at some point the ORR (Office of Rail & Road) will be involved in oversight too, and then up to the Transport Secretary – well done Grant Schapps.  Just a pity it took so long to start getting the rail house in order.  But who owns the trains?  Will the TOCs still lease the trains – new and old – from the ROSCo’s through the banks and investment houses?

It will be interesting to see how this develops…

Even The Guardian (to be fair they published their story on the 16th May) gets in on the act:

Huffington Post …

The broadcasters have been covering it too, even the BBC.  But this is probably going to be interesting, with the private sector’s track record and heavy subsidies, the Government’s planned budget cut may not get this new ‘arms length body’ off to a good start.  This is all part of the Williams Review – due out as a ‘White Paper’ today (Thursday) – will, like the much re-written and reviewed report, also be delayed?

The essence of this latest upheaval on the railways, which – implied if not admitted – is a failure of the whole episode of privatisation begun under John Major’s stewardship.  This is though only part nationalisation – which industry people have been calling for over many years – and the most recent impacts of the timetabling fiasco, and Northern Rail’s nightmare years have led to equally strident calls from the travelling public.

Manchester and Transport for the North have each clearly welcomed the proposal

The mainstream media have been obsessed with the introduction of Carnet style ticketing systems, which in this case amounts to a digital ticket for 8 trips in 28 days, with no pre-booking of days that you will travel.  At least one UK TOC has been offering these already, but as a physical book of single trip tickets – a sort of voucher arrangement – this latest idea is of course paperless.  Since the details of the operation of Great British Railways (GBR) have yet to be fully finalised, there is scope for a ticketing App disaster perhaps too.

That said, I believe it’s a step in the right direction, as so very clearly is brining the whole of the infrastructure and scheduling of train services under one management system. Except obviously for train operation, maintenance and maybe on-train catering, and the ownership and provision of rolling stock.

The official view:

Watch this space.

-oOo-

Springboks & Bongos – Part 2

Standard

The Thompson era on the LNER was in sharp contrast to the previous twenty years, under the guiding hand of Sir Nigel Gresley.  During Gresley’s day there were a number of notable designs, and the locomotive stock was represented by a large number of different types, often designed for specific purposes, produced in response to current business and commercial demands.  Gresley’s designs could almost be described as bespoke, or niche products, aimed at satisfying an immediate business need, and not providing a standard range, or designing motive power which could be used on a wide variety of services. 


Another of the pre-nationalisation built B1’s, in this case, North British built 61056, works No. 25812, delivered in July 1946, at speed on a special in the early 1950s.  This loco was an Ipswich engine in 1950, but by April 1964, had been withdrawn for scrapping.
  Photo; Roger Shenton / RPB Collection

The business of running a railway and providing commercial transport services had begun to change dramatically when Edward Thompson took charge, and of course, the demands of the Second World War denied Thompson the luxuries (in locomotive design terms) of the Gresley years.  The business was demanding more efficient services, reducing costs – a recurring theme – and simplicity in the locomotive department. 

After the initial trial running carried out under LNER ownership, when the design was new, the next major test for the B1s came in 1948, just after nationalisation, and the Interchange Trials began.  Some interesting conclusions were drawn on the results of these trials, such as the fact that the B1 appeared to be more economical on the former Midland lines, and the Black Five fared better on the Great Central route!! 

Later still, in 1951, a series of trials took place over the Carlisle to Settle route, and B1 Class 4-6-0 No. 61353 formed the subject of intensive trials between 1949 and 1951, along with static tests at the Rugby Test Plant. The B1 performed well, and overall, the tests seemed to indicate a good well-balanced design, with a free steaming boiler, and a locomotive that was economic and efficient at the tasks it was set. 

In the end it was the arrival of BR Standard classes and diesel traction that signed the death knell for the class.

Click on the link below to read on …..

Springboks & Bongos

Standard

For all the talk of Nigel Gresley and his exceptional express passenger types, the LNER were in dire need of a easy to build, easy to maintain and all-round workmanlike mixed traffic locomotive. This arrived with the company’s last CME – Edward Thompson – and who provided the basis for the locomotives to meet the operating departments exacting demands during and after the Second World War.

These were the 2-cylinder 4-6-0s of Class B1, or “Antelope Class”, which arrived in 1942, and quickly acquired the nickname “Bongos”. The early examples were named after Antelopes, and included Springboks, Gazelles and Waterbucks – but it was after the 6th member appeared in February 1944, and sporting the name Bongo that that name stuck, and they were affectionally forever known as “Bongos”.


The up “Queen of Scots” at Newcastle in early BR days, hauled by class B1 No. E1290 – temporary E-prefix to the number – with the full title on the tender sides.  This view of the right hand side also clearly shows the generator, mounted to the running boards for electric lighting, in place of the earlier design of axle mounted alternator.   
Photo (c) M Joyce/Gresley Society

They were a great success, adapting and adopting the latest ideas and techniques in design and construction, and with only two sets of outside cylinders and valve gear, were destined to give Stanier’s ubiquitous “Black Five” a run for its money as the 1940s came to an end and nationalisation took place. Thompson’s approach – in this case supported by the two main loco builders of North British Locomotive Co. and Vulcan Foundry – who built 340, with the remaining 70 from BR’s Darlington and Gorton Works – was a forerunner of the approach taken when the BR Standard classes were built.

The Thompson era on the LNER was in sharp contrast to the previous twenty years, under the guiding hand of Sir Nigel Gresley.  During Gresley’s day there were a number of notable designs, and the locomotive stock was represented by a large number of different types, often designed for specific purposes, produced in response to current business and commercial demands.  Gresley’s designs could almost be described as bespoke, or niche products, aimed at satisfying an immediate business need, and not providing a standard range, or designing motive power which could be  used on a wide variety of services. 

The services that the new B1 was intended to operate were very wide ranging, and it was achieved in practice, bearing some testimony to the soundness of the idea, and as a cost-effective locomotive design they were succesful and amongst the best of their era.

The first part of their story is outlined below, so please click on the link to read on …..

Part 2 to follow soon …. watch this space

Changing Face of Amtrak’s North East Corridor – and a New Acela

Standard

Beginnings

The North East Corridor of the Amtrak rail network has been, and remains, the most important rail route in the USA, connecting the major cities of the Eastern Seaboard with the federal capital of Washington D.C. It has been at the forefront of the deployment of high-speed trains for decades, way back to the days of the Pennsylvania Railroad’s grand electrification work, and the use of the world famous GG1 locomotives, with Raymond Loewy’s streamlining.

When Amtrak – more precisely the National Railroad Passenger Corporation in 1971, under the ‘Railpax Act’, passenger rail services were and had been run down to a very considerable extent, and the Federal Government decided it was important to rescue the most important routes. Of greatest importance were the lines in the North East States, and the infrastructure was just not fit to provide late 20th century passenger services, and so began the NECIP – North East Corridor Improvement Project.

Back in the 1980s, high-speed rail was dominating the headlines, and by 1986, the USA had experimented with, and was developing that membership of the high-speed club, and only the UK, despite the technology, research and the ill-fated APT, was being left behind. In the USA had had in mind high-speed rail transport since 1965, when it enacted the “High Speed Ground Transportation Act” in 1965, which was a direct response to the arrival of the ‘Shinkansen’ bullet trains in Japan the previous year. There followed trials of ingenious gas-turbine trains from the United Aircraft Corporation – the UAC Turbotrains – which were in revenue earning service on NEC services between 1968 and 1976. These overlapped the formation of Amtrak, and ran in Amtrak colours for a time.

A less than successful gas turbine powered train intended to provide high-speed passenger services was the UAC Turbotrain, seen here at Providence, Rhode Island in May 1974, in the early Amtrak colours. Photo: Hikki Nagasaki – TrainWeb https://commons.wikimedia.org/w/index.php?curid=48607485
Just prior to the creation of Amtrak, Budd built these ‘Metroliner’ sets to try and improve passenger ridership on the NEC. These Penn Central liveried units were perhaps the start of a transition to high-speed rail. Photo (c) Charly’s Slides

To provide improved passenger services on the NEC, in the late 1960s, Penn Central ordered and operated the Budd built “Metroliner” trains for its electrified route out of New York. These trains were sponsored by the DOT (Department of Transportation) as a “Demo Service” for high-speed inter-city working along the corridor. They were a success and led, a few later to the appearance and styling of the first “Amfleet” cars.

But, next on the high-speed agenda were the ANF-RTG “Turbotrains”, which, once again, were powered by gas turbines, with the first two fixed formation sets built and imported from France from 1973. However, these were not set to work on the NEC initially, but sent out to Chicago, where they worked services to and from the mid-west. They were based on a very successful design running on SNCF metals in France, and whilst the first 4 were direct imports, Amtrak “Americanised” the design with another 7 of the 5-car sets, to be built by Rohr Industries, and powered by the same ANF-Frangeco gas turbine. These Turbo Trains were put to use on the “Water Level Route” out of New York, and were fitted with contact shoes for 3-rail working in and out of Grand Central Terminal. These were a success – if not super fast, they were very economical, and cut oil consumption compared to the earlier designs by about 1/3.

The first venture overseas to finmd a high-speed solution for non-electrified routes around and feeding into the NEC was the ANF-Frangeco gas tubine powered sets from France. They were much more reliable and economic operationally than the UAC Turbotrains, and resulted in a design involving this proven technology, but built and ‘Americanised’ by Rohr Industries. Photo: (c) Charly’s Slides

South of New York, the Pennsylvania Railroad had electrified its main line into and out of New York back in the 1930s – and of course bought the unique and classic GG1 electric locomotives. These hauled the most prestigious passenger trains on the Pennsylvania’s lines for many years, but the dramatic collapse in passenger operations in the 1950s and 60s was a major challenge. Railroads were going bust at a rate of knots, and there were mergers that perhaps shouldn’t have been, and with railroads focussing on freight, the track and infrastructure was not good enough for high-speed passenger trains. The Government decided that something needed to be done to protect and provide passenger services in the North East, and following the examples of other countries, provide high-speed services.

The end result was the North East Corridor Improvement Project, and of course the formation of Amtrak.

First Steps

Having taken on the PRR’s ‘Metroliner’ and GG1 for passenger duties under the wires, it was time to look for replacement and improvements. The first changes came by way of 6,000hp E60CP electric locomotives from General Electric, and to marry up with the ageing passenger cars, these Head End Power (HEP) units also had steam heating fitted. Mind you, so did some of the new ‘Amfleet’ cars that were converted to provide HEP in the early days.

On the electrified lines of the former PRR in the NEC, General Electric were commissioned to build these hge 6,000hp E60CP locomotives, which were planned to provide 120 mph running. Sadly, that objective was never achieved, and the power to weight ratio in the build of these locos was a factor. Photo: Amtrak

The E60s were not a success, and their planned operational speeds of up to 120 mph was never achieved, and in part due to the suspension and transmission arrangements, together with the less than satisfactory state of the infrastructure. The E60s had their speed limits capped at 85 mph, even after suspension design changes, and were later sold off to other railroads. High-speed passenger working was not something the American railroads and the NEC in particular had any great experience with at that time, and it was playing catch up with other countries. The next high-speed proposal out of the blocks was much more successful, as Amtrak turned to Sweden and a version of its 6,000hp Bo-Bo locomotive, which, built by General Motors in the USA was nicknamed ‘Mighty Mouse’.

An AEM7 “Mighty Mouse” built by General Motors – also offered 6,000hp but with a much greater power to weight ratio. The design was based on the Swedish ASEA Rc4, and was an outstanding success, and paved the way for further developments of high-speed rail on the NEC. Photo: (c) Rail Photos Unlimited

The imported trial locomotive was the ASEA built Rc4, and was half the weight of the General Electric E60, and more aerodynamic. It was an outstanding success on trial, and despite GE being the only US manufacture of electric locos at that time, its rival, General Motors, was licensed to built ASEA equipment, which of course made it so much simpler to introduce a modern, high-speed design to the corridor. After trials, Amtrak ordered 15 of the new AEM7 ‘Mighty Mouse’ locos from General Motors, and this was rapidly followed by another 32, bringing the class total to 47. It would be wrong to suggest they ‘revolutionised’ high-speed rail in the Northeast Corridor – but they certainly paved the way for future successes – after the $multi-million NEC Improvement Project got under way.

The fixed formation sets of the ‘Metroliner’ fleet in Amtrak service on the NEC as a high-speed option dates back to 1971, when the DOT reported its preference for IHSR-1 (Improved High-Speed Rail), with the ‘Metroliners’ as the minimum investment. These self-propelled electric trains were not a great success, and were plagued with reliability problems, and even after refurbishing in the early 1970s they proved no better than the electric locos hauling the new ‘Amfleet’ cars along the corridor.

Since electrification at the time was not being progressed further – although obscure ideas such as underground tubes, STOL/VTOL aircraft and magnetic levitation systems were discussed as high-speed options – on the rail, more gas-turbine powered trains were tried. This time, the options came from France and Canada – the old UAC ‘Turbotrains’ were very heavy on fuel, alongside their perhaps questionable performance on non-electrified section.

Following the success of the French built Turbotrains, Amtrak ordered and Rohr Industries built these ‘Americanised’ versions, incoporating the technology in a style and configuration more in tune with North American design. These 5-car sets were a success on non-electrified routes feeding into the corridor, and went ‘on tour’ across the country, operating out of the mid-west. Photo: Amtrak

The new gas-turbine trials featured a French multiple unit design from ANF-Frangeco, which was already in regular use on SNCF. The two on lease from ANF were followed by an order for 4 more, and they were highly successful on mid-west routes out of Chicago, with their turbines driving the axles through mechanical cardan shaft drives. An option for more was taken up by building an ‘Americanised’ version at Rohr Industries in California – these were 5-car sets, ordered in 1974 and put to work in the mid-west, whilst the UAC ‘Turbotrains’ saw out their days on the NEC between New York and Boston. The new Rohr turbotrains were also intended for the ‘Water Level Route’ north from New York, and modifications included fitting traction motors and third rail collector shoe gear for working in and out of Grand Central Station.

Amtrak turned to Canada and Bombardier for another variant for non-electrified operations – in this casze, the Bombardier built LRC (‘Light, Rapid, Comfortable’) train, which also saw the first use of body tilting technology to enable higher speeds around curves. Here, Amtrak’s “Beacon Hill” with locomotive #38, is seen in December 1980 carrying the then current red, white and blue livery. Photo: Tim Darnell Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=15751992

The poor old UAC ‘Turbotrains’ were a failure on the New York to Boston section, and the decision to scrap the extension of electrification north from New Haven left Amtrak without suitable power to run high-speed passenger services. In 1980, a pair of 5-car LRC (Light, Rapid Comfortable) trains appeared on the corridor. These were an existing design from Canadian builders Bombardier/MLW, and already in service with Via Rail, and featured automatic body tilt mechanism that would prove a useful benefit for Amtrak. In fact, the Corporation had been considering this option for Vancouver-Seattle-Portland run, but first set them to work on the northern end of the NEC between New Haven and Boston. They were initially restricted to 90 mph, but on test demonstrated that a curve previously restricted to 50 mph could safely be taken at 70 mph – a major improvement in journey times was clearly possible.

Sadly the LRC sets were returned to Canada at the end of the trial period, as Amtrak once again came up against its perpetual enemy – budget and funding constraints.

Today

So where is the Corporation today? Well, it has genuinely embarked and delivered on a high-speed rail offering for the Northeast Corridor, with over 700 miles of track, serving the most densely populated part of the country, and now has genuine high-speed trains and technology. But it took almost 20 years to deliver the first of the fixed formation train sets.

Once again, Amtrak turned to European expertise to test and determine what was the most suitable offering, and following on from the experience gained with the successful ‘Mighty Mouse’ AEM7 paired with Amfleet cars, returned to Sweden and borrowed an X2000 tilting train set in 1992. With support from ABB, the X2000 not only worked on the NEC, but toured the USA – obviously in part to raise awareness and popularity for trains and railroads. Its regular – if not full time – working was between New Haven, New York and Washington, and during the X2000’s stay, Amtrak agreed with Siemens to test the German ICE train on the same route.

Swedeish State Railways X2000, built by ABB proved a game changer for Amtrak in its view of high-speed electric traction with tilt technology and was instrumental in paving the way for the current and future generations of NEC high-speed trains.

A year later, Amtrak went out to look for bidders to build a new high-speed train for the Corporation, and of course, both Siemens and ABB were in the running, but there was also the Bombardier/Alstom consortium. Bombardier of course had already had some exposure in the USA with the trials of its LRC tilting train. It looked in the 1990s as though Amtrak was heading towards membership of the high-speed club.

The end result was the Acela Express, with an order for 20 of the high-speed fixed formation trains to be designed, tested, built and delivered by the Alstom/Bombardier consortium. The train was operationally intended to be an ‘incremental improvement’ rather than a step change in rail technology as the Japanese “Bullet Trains” or France’s “TGV” had been. It was necessary to further improve the right of way in the northeast, with extensive replacement of existing track with continuous welded rail and concrete ties/sleepers, as well as provide three new maintenance facilities. Some of the right of way work had been carried out under the NEC improvement programme in the 1980s, but even more was needed before “Acela” could be fully operational. This included the rapid completion of electrification work from New Haven to Boston.

The most recent and successful high-speed trains on the NEC are the Alstom Acela design, and will be joined in 2021 and 2022 by the even more technically advanced Avelia series, and continue to expand hgh-speed rail transportation in the USA. Here, a northbound Amtrak Acela Express is captured passing through Old Saybrook, Connecticut in 2011 Photo: Shreder 9100 at English Wikipedia, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=19261912

In November 2000, the Acela Express made its inaugural run. This was a train like no other seen in the USA before, with 12,000hp available from two power cars, and 6 trailers sandwiched between, to provide a smooth, quiet ride at speeds of up to 240 km/hr. No less than 20 of these trains were built between 1998 and 2001, and their popularity with the travelling public dramatically raised Amtrak’s share of the passenger market. Between New York and Washington DC, passenger share grew from 36% to 53%, and between New York and Boston it was even more marked, going up from 18% to 40%. At the same time, airline passenger share declined from 64% to 47% between the Big Apple and Washington.

America’s rapidly growing network of high-speed rail corridors that perhaps owe their inclusion following the achievements of successive Northeast Corridor Improvement Programs.

It has been a huge success, and in part at least has driven the demand for kickstarting investment in other high-speed rail corridors, from 1992 to 2009. The five corridors defined in 1992 were:

  1. Midwest high-speed rail corridor linking Chicago , IL with Detroit , MI , St. Louis MO and Milwaukee WI
  2. Florida high-speed rail corridor linking Miami with Orlando and Tampa.
  3. California high-speed rail corridor linking San Diego and Los Angeles with the Bay Area and Sacramento via the San Joaquin Valley.
  4. Southeast high-speed rail corridor connecting Charlotte, NC, Richmond, VA, and Washington, DC.
  5. Pacific Northwest high-speed rail corridor linking Eugene and Portland, OR with Seattle, WA and Vancouver, BC, Canada.

Six years later in 1998 the Transportation Equity Act for the 21st Century designated another group of high-speed rail corridors, and extensions to existing plans including:

  1. Gulf Coast high-speed rail corridor.
  2. The Keystone corridor
  3. Empire State corridor
  4. Extension of the Southeast corridor
  5. Extension of the Midwest High-Speed Rail Corridor (now called the Chicago Hub corridor)
  6. Improvements on the Minneapolis/St. Paul- Chicago segment of the Midwest High-Speed Rail Corridor.

Extensions has already been approved to the Southeast corridor in 1995, with further extensions to the Chicago Hu, and the Northern New England route and a new South Central Corridor in 2000, and to date further extensions and expansion of these key corridors are either in plan or approved. On top of this, for the original corridor – the NEC – new generation of Acela high-speed trains has been promised, and already under test, as the attached video shows.

Finally, after almost total dependence on the automobile for long distance as well as commuter travel, the age of the train in the USA is coming into its own. Environmental credentials are high, it is sustainable mass transportation, and popular.

A superb view of a new Avelia Liberty trainset passes Claymont, Delaware on a test between Race Street (Philadelphia) and Ivy City (Washington DC). These are set to enter service with Amtrak in 2021, with all sets in by 2022, replacing all current Acela Express trainsets. Photo: Simon Brugel – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=93569932

-oOo-

Useful Links & Further Reading

To Immingham for Christmas

Standard

Many years ago, I read a copy of the magazine “Model Railway Constructor”, and inside, was an interesting item about the “Great Central Railway’s “Immingham Class” 4-6-0, designed under the direction of J.G. Robinson, the railway’s CME, and built by Beyer-Peacock at Gorton, Manchester.  They were classified 8F by the GCR, and went on to become Class B4 under later LNER ownership, but only 10 locomotives were built, with four of the class surviving into British Railways days.

The image at the head of this piece is actually a view of the experimental design – Class 8C – that the Great Central used in trials against the Atlantic types that were in use on express passenger duties, but the 4-6-0s that Robinson developed from these were an operational success. (Image is courtesy of ‘The Engineer’ magazine from 1903.)

This is the drawing that caught my attention back in 1963 – hard to believe it was just over 67 years ago – the level of detail is superb – I always wanted to see an ‘O-Gauge’ model of this engine.

All 10 were built in June and July 1906, and were intended to operate on fast freight and of course fish trains.  But in the mid 1920s they could also be found on express passenger and other services.  They were the second post 1900 design with a 4-6-0 wheel arrangement for passenger traffic, and followed two 4-6-0s designated Class 8C by the GCR, for comparison with Robinson’s 4-4-2 express passenger types.  Both classes could be said to have provided the necessary drive away from the late Victorian ‘Atlantic’ 4-4-2 designs, and ushered in a new era and approach to hauling prestigious trains.

So then, the 4-6-0 was fast becoming popular for express workings – and next out of the blocks on the Great Central was the “Immingham” class – so-called because their arrival in 1906 coincided with the official start of construction of the new docks and harbour at Immingham.  This was some 5 years after the act of parliament was passed in June 1901 authorising its construction.  The act was “The Humber Commercial Railway and Dock Act”.  The act proposed the building of sea walls a dock and railway adjacent to the existing port of Grimsby.  Later in 1901 a further act of parliament enabled the building of the Humber Commercial Railway and Dock, which provided a double track connection for goods traffic to and from the new docks, with links from the south, west and east.  The new facilities were supported and taken over by the Great Central on a 999 year lease, and of course later absorbed into the LNER, with the main purpose being to export coal.

The new docks were an alternative to the expansion of Grimsby, which had been developed by the Manchester, Sheffield & Lincolnshire Railway – later becoming the Great Central – as its major sea port on the East Coast.  The expansion of east coast port facilities was considered a commercial proposition, and the company backed the plans from an 1874 report for new dock facilities by Charles Liddell, and by 1912 the Port of Immingham was open – just a 38 year delay!

So, what better way to celebrate your newly built docks than with a class of the latest designs of steam locomotive, with 6 coupled wheels – the Class 8F, otherwise known as the “Immingham Class”.

Leading Dimensions

Construction

The predecessor design for the “Immingham Class” were also built by Beyer-Peacock in Manchester, and as noted in the table leading dimensions they were fitted with two different cylinder sizes, for comparative trials, and 6ft 9ins coupled wheels.  The cylinders were placed outside the frames, with the short travel slide valves inside the frames, along with two sets of Stephenson valve gear – nice clean external appearance, but no doubt difficult to maintain in service. 

These two Class 8C 4-6-0s were constructed either side of Christmas and New Year in 1903-4 and were intended to be tested alongside Robinson’s existing Atlantic design for express passenger work.  They were built without superheaters originally, but later modifications included the Robinson modified Schmidt pattern superheater, fitted in the smokebox.

The Class 8C was fitted with 6ft 9ins coupled wheels carried in the by then standard plate frames, but with a split between leaf springs for the leading and trailing coupled wheels, with coil springs for the centre driving wheels, which at 6ft 9ins diameter were common with the Robinson Atlantics.  The new 4-6-0s also made greater use of castings in the construction, and in a total length of almost 62ft 0ins, weighed in at 107 tons in working order.

The next out of the box were the “Immingham” or Class 8F 4-6-0, and as originally built appeared with 6ft 6ins diameter coupled wheels, but just before the grouping of 1923 they were fitted with thicker tyres, and the diameter increased to 6ft 7ins.  But, they were, above the main frames at least essentially the same boiler design as had been fitted to the two experimental 4-6-0s, with a saturated (no superheater) boiler 5ft 0ins in diameter, and built from three rings of steel plate, housing 226 x 2ins diameter smoke tubes.  The boiler design was later developed and applied to the renowned ‘ROD’ type 2-8-0s built for service during World War I.

The mainframes were the same as the previous Class 8F, but all coupled axles were fitted with leaf spring suspension, and the cylinder carried on the outside, with the slide valves inside the frames driven by the two sets of Stephenson link motion.  The cylinders included long tail rods for the pistons and double slidebars, mounted to the rear cylinder cover, and suspended from a motion bracket attached just in front of the leading coupled wheels. After the 1923 grouping all 10 locomotives were fitted with superheaters, under Nigel Gresley’s direction, and some of the class were fitted with 21ins cylinders and piston valves by the 1930s.  The “Immingham” Class seems to have been a focus for a range of experiments in terms of the style and design of various boiler fittings, from injectors and safety valves, to different steam domes and chimneys.  In LNER days these resulted in a variety of sub-classes – just to add to the complexity – B4/1 were saturated versions, B4/2 were superheater fitted, and then changed so that B4/1 had 21ins cylinders and B4/2 had 19ins cylinders.

Ex-GC Robinson B4 (“Immingham”) 4-6-0 at Ardsley Locomotive Depot. Although successful, they had a relatively short life, and were ‘non-standard’, and replaced by the hugely successful Thompson B1s soon after World War 2. The B4 class were built mainly for fast freight and fish train work; No. 1486 (ex-No. 6101) was built 6/1906, withdrawn 10/47; it still has the wartime ‘NE’ on the tender.                  
Photo:  Ben Brooksbank, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=18697866

Operations, Building & Withdrawal

Having said that these engines were originally intended for fast freight and fish trains to Grimsby – and of course Immingham – at Neasden, one of their original allocations, they were used on express passenger trains between Marylebone and Leicester.  Engines allocated to Gorton (Manchester) and Grimsby were used on express freight and fish trains, whilst during WW1, Neasden engines were used on troop trains.

During the 1920s they were moved around quite a bit, but spent much of their time on passenger and excursion trains, until they were replaced on some routes by Ivatt Atlantics – slightly ironic perhaps given that they were considered a better overall design for those duties in some quarters.  Later allocated to Ardsley and Copley Hill in the Leeds area, they spent some time  working between Leeds and Doncaster on Kings Cross bound trains.   Into the 1930s they continued to work out of Leeds and often on excursion workings to Scarborough.

A visitor from Ardsley (56B) on 8/6/1947 is “Immingham” class “B4” 4-6-0 no.1488 (6103 until 1946) She was withdrawn from that depot on the last day of November 1948.  (Photo courtesy: Chris Ward at http://www.annesleyfireman.com/index.html  )

With their various sub-classes they continued to work excursion and other passenger turns, and were allocated to East Anglia, and former Great Eastern depots, including March.

But, their days were numbered after the Second World War, especially with the arrival of the Thompson B1 class 4-6-0.  Although earlier in 1939, No. 1095 – then numbered 6095 was withdrawn in July of that year, but rapidly returned to traffic with the outbreak of war.  Unhappily, 6095 was involved in a collision at Woodhead in 1944, and was finally withdrawn.

The remaining members of this Robinson designed 4-6-0 were withdrawn and scrapped between July 1947 and November 1950.  The dubious honour of the last to be withdrawn actually went to the only named member of the class – BR No. 61482 – “Immingham”.

They were overall a very successful design, and had an interesting history in operational service, and had in some way their own part to play, along with their designer in paving the way for one of the country’s most famous Locomotive Engineers.

After the First World War, and as the 1920s approached, the Government was about to start grouping the 100 or so different railways together the Great Central would become part of the new LNER in 1923, and John Robinson was first choice for CME.  But, despite the fact that he was possibly one of the most able engineers of his day he declined the opportunity, on account of his age, and a young H.N. Gresley was appointed instead.  Out of that opportunity, arose another new 4-6-0 design on the East Coast railways – the “Sandringham” Class – but that is another story.

-oOo-

Further reading and useful links:

The Gauge War – It’s Over!

Standard

A recent announcement in the press about high-speed trains that are fitted with bogies that can automatically adjust to a change of gauge seems a remarkable achievement. 

Whilst there have always been different track gauges in many countries around the world, the challenge of running a train from A to B on one gauge, and B to C on a different gauge has usually involved people, or goods, changing from one coach or wagon to another – and sometimes different stations.

Automatically changing the space between the wheels as the train runs entirely from A through to C, when the tracks are different gauges – wow, that’s new – well, relatively.

This is the automatic gauge changing train for international services unveiled on October 21, and manufactured by CRRC (Changchun Railway Vehicles).  Derived from the existing CHR400-BF trains of the ‘Fuxing Hao’ China Standard EMU family, this latest 212 metre long trainset is intended to operate between China dn Russia.  Automatically changing gauges along the way.
This is the automatic gauge changing train for international services unveiled on October 21, and manufactured by CRRC (Changchun Railway Vehicles).  Derived from the existing CHR400-BF trains of the ‘Fuxing Hao’ China Standard EMU family, this latest 212 metre long trainset is intended to operate between China dn Russia. 
Automatically changing gauges along the way.

Back in 1880s, Brunel’s ‘Broad Gauge’ advocates were at war with supporters of Stephenson’s ‘Narrow Gauge’, and although this did not necessarily result in literal pitched battles between teams of ‘navvies’, the contractors building the lines were occasionally at loggerheads.  One flashpoint was in Gloucestershire on a route from Stratford-upon-Avon to Chipping Campden, where, having been forced to build a 1-mile long tunnel near Mickleton, and just to the north-west of Campden.  The ‘battle’ involved some 3,000 men, and the Riot Act was read on two occasions, over two days, and Brunel and Marchant both agreed to arbitration.  However, the railway company who had appointed Brunel as engineer paid off Marchant and his contractors and completed the tunnel the work themselves.  Unsurprisingly the legacy of the disturbances caused concern from all the locals of Chipping Campden, and events even reached the pages of the ‘Illustrated London News’.

Replica of GWR Broad Gauge (7′) Gooch “Alma” or “Iron Duke” Class 4-2-2 “Iron Duke” with wood clad boiler and firebox at the Great Western Society’s Didcot Railway Centre.   Photo: By Hugh Llewelyn CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=74608818

The gauge war – waged on both the technology and economic front was partially settled in 1846, and followed from an Act of Parliament, with the exciting title “An Act for regulating the Gauge of Railways”.  The reason this was only partially settled, was of course because it made clear that it was illegal to build any new railway that was not to the standard gauge of 4ft 8 ½ins and 5ft 3ins in Ireland.  BUT, the exception was Brunel’s 7ft gauge Great Western Railway – oh and various acts of Parliament already passed or in progress relating to various extensions, branches and other lines in the South West, parts of Wales, etc. 

Nice, clear and straightforward!  The same act also included a clause that prevented any railway gauge to be altered after 1846, used for “the Conveyance of Passengers”.  Fascinating, but clearly problematic, and the system of two gauges in England led to the duplication of passenger and goods station facilities in some locations, and the Act also required the GWR to include a third rail where the standard and 7ft gauge lines met.

Gauge disparity around the world has always caused difficulty, and perhaps nowhere more evidently than in Australia, where the various states began railway projects, with different contractors, and engineers leading to long term operational problems.  The vast majority of railways are built and operate on the standard gauge – 1435mm – but there are still those differences, whether it is in Spain, India, Switzerland or Russia.  In fact, the railways in Russia are built to the Irish standard 5ft 3in gauge, and that’s where the latest techniques and technology to achieve more seamless international train operations with China are being deployed on high-speed services.

The Change of Gauge Made Simple

Back in 2003, an interesting story appeared in the Japanese journal “Railway Technology Avalanche” describing “Gauge-changeable EMUs”.  It was stated that these were developed for through-operation between 1,435-mm gauge and narrow-gauge 1,067-mm gauge lines, and the 3-car test train was fitted with two types of bogie, where the back to back distance could be changed on the move.  Amongst the attributes needed were the capability to change the gauge while running, the inclusion of traction motors, high-speed running stability, and the ability to operate on routes with sharp curves.

The two types of bogie tested included one where the traction motors were essentially fixed to the wheel centre, which could be moved laterally along the fixed, non-rotating axle.  This was achieved by track mounted rails that provided support to the axleboxes, which in turn supported the vehicle body – a locking pin through the axlebox allowed the wheelset to be released and slid along the axle.   The second design adopted a single piece wheel and axle arrangement, with a Cardan shaft drive from the body mounted traction motor. With this design, a stopper in a groove in the axlebox fixed the wheels at that gauge, and during gauge-changing operation the stopper was raised by an arm mounted at ground level, with the wheelset then free to slide laterally to the new track gauge.

Class S/121 EMU for Spain includes the CAF designed ‘BRAVA’ system on the bogies, which allows change of gauge without stopping – perfect for international services between Spain, France, Italy, and other European networks.  In operation since 2009.

Each of these approaches required significant changes to the vehicle running gear, and track mounted rails and arms to complete the transition between rail gauges, but none resulted in any production series build of these EMUs.  

But, this was not the first application of such novel technology – that honour fell to Spain, where in 1969, the ‘Talgo’ system first appeared.  In Spain, the principal track gauge selected was 5 ft 5 2132 in – commonly known as the Iberian Gauge.  However, in the 1980s, all new high-speed lines – and especially those on international routes were constructed to standard gauge, which made cross border services to France much more straightforward.  The Talgo principle was well established in Spain though, and using the ‘Vevey Axle’ provided these unique, articulated trains with the ability to change gauge without stopping, and of course to cross borders.  The system also provides for much higher speeds today, and tilting technology is embedded in the design, and Talgo technology has been developed in recent years and now operates in Finland, Russia, Kazakhstan, and even the USA.

This is what the CAF designed ‘BRAVA’ system looks like in action:

Very impressive.

Spain continues to operate an extensive fleet of gauge-changing trainsets between 1435 mm and 1668 mm gauges, but they are limited to a maximum of 250 km/h.  So, the development of ‘gauge changing’ trains has progressed quite a bit in recent years, but less so perhaps on really high-speed fixed formation sets, for standard gauge routes, except for the CAF built Class 120 and 121 for Spain. 

Another view of the latest derivative of the CHR400-BF trains of the ‘Fuxing Hao’ China Standard EMU family, showing the track mounted infrastructure and a wheelset used on these latest high-speed trains.

The most recent addition to the high-speed gauge changing without stopping club is China, where, in October 2020 the state-owned rolling stock manufacturer CRRC Changchun Railway Vehicles, displayed a prototype gauge-changing high-speed train intended for international operation.  At 212 m long, the new train is a development of the company’s CHR400-BF design, and intended for international operation between China, Mongolia, Kazakhstan and Russia, at speeds of up to 400km/hr.  On top of this, the train is planned to work from different voltages, and with operational temperatures varying from +50C to -50C.

Interestingly, one of the first proposals for a variable gauge wheelset was put forward for the GWR at the end of its ‘Broad Gauge’ era, in 1886, by one John Fowler.  Six years later, the ‘Battle of the Gauges’ in Britain was over, and standard gauge was king.  As we know, the rest of the world continued to follow a variety of gauges, but perhaps that problem at frontiers, or between different railway companies has finally been laid to rest with these latest gauge-changing trains.

-oOo-

Useful Links & Further Reading:

Leaves on the Line : Wrong Kind of Snow

Standard

These have been the sorts of headlines that have greeted rail travellers from the mid-Autumn to early Spring, every year on Britain’s railways, and back in the days when it was just British Rail, the target for complaints and abuse was just one organisation. Today, and coming in the next 8 weeks perhaps, the same problems will doubtless occur, and delays, cancellations and complaints, along with tempers no doubt, will rise.

But, are we any further forward? The answer is yes and no – obviously!

Recently, a research paper was published identifying the tannin in leaves that mixed with the damp conditions at the railhead, and in Network Rail’s words – are “the black ice of the railway”. This in certainty will reduce friction between rail and wheel, and loss of traction. The problem, is how to remove it, and increase the adhesion levels.

This was how the media ‘broke’ the story at the end of July.

Guardian headline

Back in steam days it was, to some degree, rather more straightforward perhaps, mixing steam and sand directed at the interface ahead of the wheels as they made contact with the rail was a simple option – not infallible, but an option. Of course, that process continues to this day, as the ‘standard’ method – but improvements were and are essential.

In 2018 the University of Sheffield offered a possible solution to the leaves on the line question with an innovative idea using “dry ice”, in a trial, funded by a grant from Arriva Rail North, which led to further trials on a number of passenger lines during autumn 2019.  Working together with a Sheffield business – Ice Tech Technologies – the process was tested on little used freight lines, in sidings at depots, and later, at other locations. This is a video showing the basic elements of the process:

Fascinating, but perhaps still some way to go.

The CO2 used, is a by-product of other industrial processes, and unlike the conventional railhead cleaning and sanding, does not leave a residue on the rail head. The track cleaning trains do not have to carry 1000s of litres of water, and longer distances can be treated.

Overall the process is intended to provide improved traction and braking control.

At the heart of the challenge posed by leaves, is that layer of ‘black ice’, which in autumn and winter causes so much passenger misery and operational problems. Now, back in Sheffield, the university’s renowned skills and knowledge have identified the cause – and the answer seems to be ‘tannin’, which is present in the leaves falling from the lineside trees every year. These large molecules seems to be the key ingredient that leads to the formation of the compacted layer on the surface of the rail, providing that unwanted reduction in friction at the rail-wheel interface, in turn leading to traction and braking.

Network_Rail_plant_at_Dereham

Network Rail Windhoff Multi-Purpose Vehicle DR98910/60 at Dereham in May 2008.      Photo: DiverScout at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6802613

The railway environment provides many challenges in actually running changes as environmental conditions change over the year, but in Britain, winter especially has been the cause of many train cancellations and delays. Nowadays, the operation of trains and signalling systems are ever more dependent on security of communication – be that signalling centre to train, or track to train – and the on-board systems and traction drives are equally prone to the impact of our changeable weather.

Back in the 1980s, there was a famous, and often-repeated phrase used by a British Rail spokesman to respond to a journalist’s question about snow, train delays and cancellations. That remark: “the wrong kind of snow” was as historic as the BBC weatherman’s observation that a hurricane was not going to happen – and then it did, and Sevenoaks became Oneoak!

The “Wrong Kind of Snow” remark prompted me to write an article in Electrical Review looking at how the UK, dealt with extreme weather conditions, and compared these to how our near neighbours, in continental Europe managed these events. The full feature is as shown below – click on the image to read in full.

Wrong Kind of Snow3

Let’s hope these discoveries abojut tannins and the new techniques for keeping the rail head clean will work to better effect, and reduce the impact of leaves on the line in the coming months.

-oOo-

Useful Links & Further reading:

Ice Tech Technologies Ltd

Rail Innovation & Technology Centre (RITC) at the University of Sheffield