Metrolink adding 27 light rail vehicles to its fleet

Standard

Metrolink – the UK’s first light rail network of the modern era was designed and built by the GMA Group (a consortium of AMEC, GM Buses, John Mowlem & Company, and GEC) at a cost of £145 million.  So, at least one local business (GEC) was heavily involved. This was a time though when light rail, and rapid transit was in its infancy in the UK, and the first units were built by Ansaldo-Breda, with Bombardier Transportation and Vossloh Kiepe.

Kiepe are still with us today, in this latest expansion.

As the original UK metro, it did not adopt the now universal low-floor vehicle design, but required elevated platforms at the various stops.

Metrolink’s first services began operating on 6th April 1992, when the Bury line opened to Victoria Station, following the line of the former BR rail link, with the first street-level trams began running 3 weeks later on 27 April. The Altrincham line opened on 15 June, and the branch to Piccadilly station on 20 July, with Metrolink officially opened by The Queen on 17 July 1992.

But it has been a great success, and today, “Kiepe Electric”, have been awarded an order to supply another 27 Metrolink vehicles – now described as “high-floor” – in partnership with Bomardier Transportation UK.  Kiepe Electric is a subsidiary of Knorr-Bremse, renowned around the world for braking technology and solutions in particular.

Here’s what they had to say about the latest order:

“We’re fully focused on the mobility of the future,” says Dr. Jürgen Wilder, Member of the Executive Board of Knorr-Bremse AG responsible for the Rail Vehicle Systems division.

“Through our solutions for buses and rail vehicles we are driving forward the almost full electrification of the mass transit sector: This latest order from Manchester provides further evidence of the technological class and economic efficiency of our products and systems.”

Kiepe Electric is to build the high-floor vehicles in conjunction with consortium partner Bombardier Transportation UK. The systems specialist from the Knorr-Bremse Group is to supply the entire drivetrain and control technology. The Knorr-Bremse contribution will also include the on-board power converters, HVAC system, air-conditioned driver’s cab, CCTV system and outside cameras, as well as the diagnostics system. Bombardier will be responsible for building the vehicles.

“The new vehicles will be equipped with an even more powerful and reliable on- board and drivetrain converter concept,” explains Dr. Peter Radina, Member of the Manage- ment Board of Knorr-Bremse Rail Vehicle Systems and responsible for Kiepe Electric.

“In this respect, this project documents our successful approach to the subject of obsolescence within a series of vehicles: Our systems are downward compatible, which means that the new trams can be coupled to existing vehicles with no problems.”

Today, Metrolink is the largest light rail network in the UK, carrying some 42 million passengers a year, and this will bring the fleet total up to 147 trams on the TfGM (Transport for Greater Manchester) owned network.

The new vehicles, scheduled for delivery between spring 2020 and summer 2021, can each carry 206 passengers, and the latest order provides a substantial expansion of what is already a large fleet. This additional capacity will enable the network to increase the number of double units on the busiest routes.

Good to see this latest expansion of the pioneering light rail/rapid transit going from strength to strength.

Read more …

Kiepe Logo

-oOo-

 

The Post Office Tube Railway

Standard

Another English Electric FIRST……

The world’s first fully automatic electric railway was opened in 1924, beneath the streets of London. The civil engineering work for the Post Office tube, including the running tunnels and tracks, were laid down before the 1914-18 war, although it was not until 1924 that electrification work was begun, following the acceptance of the English Electric Co.’s proposals. English Electric’s contract with the Post Office included the provision of rolling stock, substation equipment, automatic control systems, signalling and cabling.

The route covered in the project was 6 ½ miles long, with tracks laid to 2ft 0ins gauge, and power supplied at 440V d.c., and fed to the conductor rails from three substations. The original plan was to carry the mails between main line termini in London to the Post Office’s major sorting offices at the Western and Eastern ends of the city, to avoid the intense congestion in London’s streets.

London_Post_Office_Railway_Map

From Paddington to Liverpool Street, the deep level tube was constructed to link the principal GPO sorting offices. This included the Paddington District Post Office and the Eastern District Post Office in Whitechapel Road with the most important station at Mount Pleasant, about half way along the line, which also provided the maintenance and repair shops. A pair of running tracks was laid in 9ft diameter tunnels, which reduced to 7ft at station approaches. At each station, an island type platform arrangement was adopted, with passing loops for non-stop trains, and the railway operated 22 hours a day for most of its life.

Post Office Tube Railway 1924_2
Original Stock list

Actual vehicle speeds were set at 32 mph in the tunnels, slowing to 8 mph at the station platform roads. The rolling stock order consisted originally of 90 two axle trucks, though these were replaced in the 1930s by 50 wagons on “maximum traction trucks”. These were fitted with a pair of 22hp d.c. traction motors, reverser, and electrically operated brake gear.

Driver's cab

This photo shows the driver’s controller, with the words ‘English Electric’ at the top (obscured by driver’s handle), and stating ‘Dick Kerr System’ nearest the camera. Preston heritage.                    Photo: Matt Brown, under Creative Commons 2.0 Generic (CC BY 2.0)

New Stock & Early Upgrades

The 1924 stock was put to work when the system opened in 1927, but it was quickly discovered that they were not sufficiently reliable, and were prone to derailment. In addition, the increase in mail traffic growth demonstrated that the railway required new vehicles with greater capacity to cope with the traffic growth.

So, in 1930 50 new vehicles were ordered from English Electric, and used in articulated train formations, but within a few years, as traffic continued to grow another 10 units were ordered and delivered in 1936.

However, the newer vehicles re-used some of the equipment from the early stock, and the new stock proved much reliable and lasted into the 1980s, supplemented by a new design developed again from an English Electric prototype.

One loco – No. 809 – from the 1930 vehicles has been preserved and is stored at the National Railway Museum.

Post Office Tube Railway 1925

English Electric were justifiably proud of this narrow gauge railway, and in a review of progress published by the company in 1951, considered it to be unique in the whole railway world. The Post Office Tube did have some human intervention, at a distance, as the operation of a switch was necessary to start a train on its way, and control of the points on the track was exercised remotely, guiding the vehicles on their way.

Points

On the tracks at Mount Pleasant station.                                                                                                       Photo: Matt Brown, under Creative Commons 2.0 Generic (CC BY 2.0)

Later Changes

The railway was still carrying considerable traffic in the 1960s, and in 1962, The Post Office ordered a pair of prototype units, which were intended to provide the base of a new design, some features of which were included the 1980 stock. Whilst English Electric built the prototypes, Hunslet built the new rolling stock, although they too were not the first choice, and the order was passed from Greenbat, who had gone bust. The vehicles were completed by 1982, and remained in operation until the system was closed in 2003.

1962 - 1980 Stock list

Some of the earlier stock was retained, and renumbered after 1984, from the 1930 and 1936 batches, although none of the original 1924 order was around, the electrical equipment did continue in use in the 1930s stock.

Retained stock list

Of the two English Electric prototypes from 1962, No.1 was withdrawn and scrapped in 1967, whilst No.2 remained in service until 1980, and was repaired using parts from No.1, and renumbered 66, lasting until the railway’s closure in 2003.

Although Greenbat managed to build three of the new 1980 sets, developed from the English Electric prototypes, before going into administration, the remainder were built at neighbouring Hunslet, who supplied sets 504 to 534. The intention was to replace the almost 50 yerars old English Electric stock from the 1930s, but as noted in the table, 17 of the units built in 1930 and 1936 were kept going.

In 1984, all of the stock was renumbered, with the most recent Hunslet units carrying numbers 1 to 34, and the retained 1930s stock renumbered from 35 to 51. They did manage to survive another 19 years until the system was finally closed in 2003.

Closure, Preservation & Re-opening

The English Electric innovation may not have been the first such plan to support the Post Office, but was certainly a pioneer in the field of automation on a railway. From the first order in 1924, the system and stock lasted some 76 years, and has now been given a new lease of life as a tourist attraction.

When the railway closed in 2003 it remained out of use. However thanks to years of fundraising it was up and running again in September 2017 – at least a short section – for tourists to travel on, using new rolling stock supplied by Severn Lamb of Stratford-upon-Avon. As part of the New Postal Museum, this is likely to be a star attraction, and has already received royal patronage, with a visit from HRH Princess Anne.Severn Lamb Post Office & Princess Anne

A number of the tractor units and trailers have been rescued, including No. 809 at the NRM – however, on their page Post Office Railway, underground train, No. 809 it shows incorrect information. But the Post Office Museum has a great deal of additional information about the railway and its operations: Mail Rail Exhibition

Others were rescued and can be found at:

A fascinating piece of railway and engineering history, with its success assured as much by the innovative ideas from English Electric in Preston, as the foresight of the General Post Office. Today, mails are carried almost exclusively by road – both in and across London, and around the rest of the UK.

EE Post Office Tube Railway - book extract

-oOo-

 

 

 

Engine Number 23468

Standard

This was an 0-6-0 goods locomotive, built by the North British Locomotive Co at its Queens Park Works, in Glasgow in 1926. It was produced about ½ way though order L821, awarded to North British in 1926.

Order L821 consisted of 25 of these locomotives, carrying works numbers 23456 – 23480, and became part of the LMS company’s standard fleet of 0-6-0 goods tender locomotives, when Henry Fowler was that company’s CME. No fewer than 80 of what became the LMS standard 4F goods engine were built by North British, along with numerous ‘Jinty’ tank engines, and of course, the famous ‘Royal Scot’ class locos. The LMS had a strong supplier/partner relationship with North British in the 1920s, and the orders helped to keep the company in business during the traumatic years of the 1920s and 1930s.

The engines were built at Queens Park Works, because the North British Atlas Works had had to be closed, due the country’s dire economic recession. The railway company too was undergoing significant changes at its works, and in particular, at Crewe, where major re-organisation was under way.

In fact, during the early ‘depression’ years of the 1920s, North British’s Queens Park Works built some 201 locomotives for the LMS, including 7 for the Northern Counties Committee and a batch of 25 0-6-0 pannier tanks for the GWR.

This engine was put to work in 1927 for the LMS, carrying running number 4394, and by 1950 had already completed thousands of miles of service, on its intended work, with coal and mixed wagon loads of main line and branch traffics. After nationalisation, she was renumbered 44394, and was rostered at Mansfield shed (16D), then in one of the final allocations was transferred to Stockport Edgeley (9B) by 1964.

Fowler4F_GWSharpe

Sadly not a photo of 44394 – Engine No. 23468 – but a view of one of the later builds from North British in order number L836, begun in 1927. The sister engine shown above is actually Works No. 23669. Photo courtesy: G.W. Sharpe

 

-oOo-

Vulcan Foundry Ltd – 120 Years On

Standard

Yes, I know it actually pre-dates 1898, by almost 70 years, and was there as a driving force of Britain’s industrial revolution, and global industrialisation.  The railway workshops and foundries had been established some years earlier, in 1830, by Charles Tayleur of Liverpool, who was joined in 1832 by Robert Stephenson.  As Tayleur & Stephenson, working from the foundry at Newton-le-Willows, almost alongside the Liverpool to Manchester Railway.

 

 

0-4-0 Tayleur

The first steam locomotive to be built at the Vulcan Foundry, and intended for use on the North Union Railway.

Indian Railways 4-4-0 at Liverpool

An early Vulcan product destined for India – a 4-4-0 being loaded aboard ship at Liverpool (Photo: RPB Collection)

In 1847 the name was changed to the Vulcan Foundry Company, but Robert Stephenson had left, and Tayleur appointed another famous engineer – Henry Dubs – as Works Manager.  Charles Tayleur had also acquired a new partner, George Samuel Sanderson, and with Charles and Edward Tayleur they opened the Bank Quay Foundry, a stone’s throw from what is now one of Warrington’s railway stations.

The Bank Quay Foundry was equally as notable as the Vulcan works, and was responsible for building the world’s first iron tea clipper – the “Tayleur”, together with hydraulic presses used to construct the Stephenson designed ‘Britannia Tubular Bridge’.  As a separate undertaking, the Warrington foundry closed only 7 years later in 1854.

Vulcan Foundry family tree

The ‘organogram’ included in the GEC Diesels short publication describing the story of the Vulcan works at Newton-le-Willows

This world famous company was formally established as Vulcan Foundry Ltd in 1898, based at Newton-le-Willows, almost alongside the Liverpool to Manchester Railway, and within a short distance of  the principal Anglo-Scottish main railway line.  The diagram above shows some of the key connections between Vulcan, its acquistion – almost 60 years later – by English Electric of Preston, and on to form part of the GEC Traction empire.

 

By the time Vulcan Foundry Ltd was formed in 1898, the company had already built over 1500 steam locomotives, beginning with a pair of 0-4-0s (No.1 Tayleur, and No.2 Stephenson) for the North Union Railway, and a Mr Hargreaves.  The first locos built in 1898 were for the East Indian Railway – 16 x 0-6-0 types.  The same year saw another 4 orders for India, 1 for Uganda and 1 for Ireland.

 

From 1898 to the outbreak of the First World War Vulcan had supplied the same number of steam engines, as it had in its first 60 years of existence, clearly demonstrating the huge growth in both railways and locomotive building.  During hostilities – in both First and Second World Wars, Vulcans supplied military hardware, including tanks and munitions, demonstrating the ability and capability of its workforce.

Vulcan Foundry Advert - 1952 Rly Gazette

A typical advertisement for Vulcan Foundry from the 1958 edition of the “Directory of Railway Officials & Year Book”

The inter-war era – the 1920s and 1930s depression – saw a reversal of the country’s manufacturing growth, job losses and near commercial failure.  This was repeated with Vulcan’s competitor’s, such as the giant North British Loco. Co., although orders from the British Colonies – especially India – continued to be won.  This together with its early foray into non-steam traction, with A/S Frichs of Denmark, and a partnership with English Electric for diesel traction kept the company going.

That partnership with English Electric proved a major success and from 1945 onwards, the company’s construction of non-steam types continued to grow.  This was especially encouraged by the BR “Moderinsation & Re-Equipment Programme” of the 1950s, and the UK’s first 2000hp diesel type was built at Newton-le-Willows in 1958.

Vulcan Foundry - "wheeling" a Class 40

“Wheeling” an English Electric Type 4 (BR Class 40) at Vulcan Foundry, and slightly hidden to the right is one of the electric locos built for South African Railways during the 1950s.

At that time of course, Vulcan Foundry was becoming part of the EE Co. empire, and having been in at the start of the railway revolution and steam traction, it was also building ‘firsts’ towards the end of its independent existence.  The company’s last order was for a 500hp diesel shunter for ICI’s Northwich Works in Cheshire in 1980 – a long way from some of the most powerful  steam, diesel and electric locomotives that emerged from the Newton-le-Willows works and desptached around the world.

By 1980, the Vulcan works had been in the railway engineering business for 148 years – not a bad record!

Well Worth a watch:

These two films were made in 1954, and show the work in all areas of the Vulcan works at Newton-le-Willows – this was typical not just of Vulcan Foundry, but of the heavy engineering industry in Britain at that time.  Sadly all gone now.

 Vulcan ad logo

Vulcan Foundry 1954 (Part 1)

Vulcan Foundry 1954 (Part 2)

Useful Links:

Newton Heritage – Vulcan Foundry

 

 

Watch this space for more Vulcan info to come …..

-oOo-

 

 

 

Compound Steam on The Pampas

Standard

In 1948 the railways of Britain were nationalised – and so were the railways in Argentina.  Ours under Clement Atlee, theirs under Juan Peron, but the similarity and connections don’t end there, because many of Argentina’s railways were constructed, operated and owned by British businessmen.  The early railway engineers included men like Robert Stephenson, whilst Argentina was also home to numerous civil engineers, and 78% of the country’s rail network was effectively British owned by 1900.

According to a publication by the Institute of Civil Engineers:

“Large scale railway development in Argentina was marked by the commencement of the construction of the Central Argentine Railway initially from Rosario to Cordova.”

“While the American Wheelwright was the key to the negotiations it was the experience and capital of the contractors, Thomas Brassey, Alexander Ogilvie and George Wythes that gave the project credibility.”

Of course, Britain’s steam loco builders were always going to provide the lion’s share of motive power, and other equipment, with such extensive business investment in Latin America.

North British Order L182

North British Loco Co. built 12 of these 2-cylinder compound 4-6-0s, designated “Class 12A”, they were built at the company’s Atlas Works in Glasgow. They were built to order L182 in 1906, and carried works numbers 17436-47.    Photo Courtesy: ©CSG CIC Glasgow Museums and Libraries Collection: The Mitchell Library, Special Collections

There were in fact a total of eight British owned railways that became vested in the Argentine State Railways by 1948. Four of these were broad, 5ft 6ins gauge, two standard gauge, and two metre gauge.  The largest of the former British owned railways was the Buenos Aires Great Southern, and most of its locomotives were supplied by Beyer Peacock, Vulcan Foundry, North British, Robert Stephenson & Co., Nasmyth Wilson, Hawthorrn Leslie, and Kitson. There was some ‘foreign’ success too in winning order from the BAGS, including, J. A. Maffei, and even Baldwin.

BAGS Class 12 4-6-0 copy2

Buenos Aires Great Southern Railway – BAGS Class 12 4-6-0 2-cylinder compound locomotive, built by Beyer Peacock in Manchester Gorton, the type was used extensively on passenger and mixed traffic duties.     Photo Courtesy: Historical Railway Images

However, it was Beyer Peacock, Vulcan Foundry, and North British Loco Co that supplied the many hundreds of steam types for Argentina, and these covered each of the different gauges, from the 5ft 6ins, broad gauge, to 4ft 8 1/2ins standard gauge, metre and even narrow gauge types.  They included both simple and compiund expansion types, rigid frame and articulated designs.

The compound locomotive was extensively employed on these railways, and the ‘fashion’ for lasted longer in the southern hemisphere than the north, with many variations in design and operation.

The offering below covers this period, with a focus on the broad gauge Buenos Aires Great Southern Railway lines, where both two and four cylinder compounds were put to work.  Some details too of other railways, and the considerable numbers of locomotives supplied by the North British Co. from its works in Glasgow is outlined.

Compound Steam

Useful Links:

VF Logo

Historical Rly Images logo

sud3941_small

Buenos Aires Great Southern Railway  Class 12k 4-6-2 steam locomotive Nr. 3941 – taken at Vulcan Foundry in 1926    Photo Courtesy: Graeme Pilkington

-oOo-

Over The Southern Alps via Arthur’s Pass

Standard

By the early 1920s, both English Electric and Metropolitan Vickers were very successful in wining contracts around the world, mostly in the British Colonies.  In the far east, English Electric had won major orders in Japan and New Zealand, whilst Metropolitan-Vickers had been awarded contracts to supply locomotives for the first main line electrification project in South Africa.

 

Furthest away from home, the New Zealand electrification scheme was a “comprehensive contract”, awarded to English Electric, for the conversion to electric traction of the line from Arthur’s Pass to Otira on the South Island.

The contract involved the installation of catenary through what was at the time, the longest railway tunnel in the British Empire. The tunnel, 5.5 miles long, on a ruling gradient of 1 in 33, was hewn out of the solid rock, beneath Arthur’s Pass in the Southern Alps. The route itself was very important, linking two of the South Island’s provinces, Canterbury and Westland, and the towns of Christchurch and Greymouth.

Work was begun on the Trans-Alpine route by the New Zealand Midland Railway Company in 1887, with private finance, but was taken over by the Government in 1895, after the railway company’s plans came to grief. The plan for this Midland Main Line was for steam operation, but the Arthur’s Pass section was the major challenge in the final connection.

Construction work was difficult and slow in parts, with men, horses, picks, shovels and very little machinery, and the most difficult section was over Arthur’s Pass

The route would carry heavy traffic, and the ascent over Arthur’s Pass was to have adopted the Abt Rack system, but this was clearly not a suitable option for this main line.

By 1900, the line from the West Coast to Otira had been completed, with contractors John McLean & Son were awarded a contract in 1907, to create the Otira Tunnel under the Southern Alps, and were allocated 5 years to complete the work. The project was dogged by labour troubles, and the government was petitioned for help, following strikes, disputes and difficulties during construction work. The Public Works Department took over the work, and despite the First World War, work continued, with the tunnel breakthrough taking place in 1918.

English Electric’s contract for the electrification of the “Arthur’s Pass” section of the route was one of the company’s earliest “comprehensive contract” projects, and in addition to the overhead catenary, and locomotives included a power station at Otira. This impressive project to complete this Trans-Alpine route was finally opened throughout on 4th August 1923, some 37 years after it was first proposed.

Track & Overhead

A view of the electrified section, showing the different types of contact wire support.

Overall, equipment provided by English Electric included;

  • 5 complete, 720hp, 50-ton Bo-Bo electric locomotives.
  • 1 complete, 400hp, Bo-Bo battery locomotive.
  • 1 steam generating station, with two 1,200kW, 1,650V d.c. turbo-generator sets.

The overhead line equipment also provided by English Electric, with the conductors energised at 1500V d.c. This was, at the time a common standard for the early main line schemes – and according to the company’s publicity “ …no other system than electric haulage was seriously considered”.  The fixed structures of the project included ‘double catenary’ in the open, and ‘single catenary’ through the Otira Tunnel. The conductors were supported in the open on wooden poles, with insulators attached to angle iron brackets, with more complex girder structures in stations and yards.

Steam traction was the order of the day on either side of “Arthur’s Pass”, with electric traction over and through the Otira Tunnel. The company also supplied five electric locomotives, which came to be the “E0” Class Bo-Bo design for passenger and freight duties, together with a battery locomotive for inspection and maintenance work.

gec136

This photo taken in 1952, shows the 720hp E0 class locomotives still hard at work on mixed traffic duties on what was one of the first “composite contracts” for the 3ft 6ins gauge.               Photo: Author’s Collection

Locomotives were Bo-Bo double-ended types, rated at 720hp for those in use on the main line, and a single 400hp battery locomotive. The latter had 50hp traction motors, driving the wheels through single reduction gearing, using a ratio of 15.83 to The more powerful 720hp types, had four 179hp motors, with force ventilation, and connected permanently in series, as two pairs of motors. The tractive effort produced was 14,200 lbs at the one hour rating of the traction motors.

NZ Locos - dimensions table

These ‘box cab’ locomotives, with their twin, roof mounted pantographs used the Westinghouse air brake, and a rheostatic brake, where the electrical energy of the motors was dissipated as heat through banks of resistances. The reason why regenerative braking systems were not employed – although it was considered – was due to the fact that the power station was there purely to supply power to the railway, there being no other load to share any regenerated energy that might otherwise be fed back into the line.

The English Electric locos were still in use on this line until 1969, and one of the class has been preserved by the Canterbury Railway Society., and restored to working order in 1977, and carries its original running number E3.

NZR_EO_3_at_Ferrymead

The preserved English Electric loco No.3 at Ferrymead.
Photo courtesy Yak52fan – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6938570

The success of this first scheme also resulted in the electrification of the seven miles long, suburban section of the same route, between Christchurch and the port of Lyttelton, which again involved a ‘comprehensive contract’. English Electric was awarded another ‘ comprehensive contract’ in 1929 for this work, including the tunnel section of the line to Lyttelton, the chief port of the province of Canterbury.

 

Here again, English Electric supplied rotary convertors for the substations, but this time the principal source of power was the hydro-electric station at Lake Coleridge. Six 1,200hp Bo-Bo locomotives were supplied, with power equipment similar to that installed on the Arthur’s Pass locomotives, with the English Electric Co.’s camshaft control system. The introduction of suburban services over the line from Christchurch to Lyttelton was completed in February 1929.

Further Reading:

EE No.54

Useful Links:

Otira Tunnel – Midland Railway

Rail Tunnel Pierces the Southern Alps

Tranz Alpine

RH Trust New Zealand logo

What Happened to Piggyback Freight?

Standard

Almost 25 years ago I wrote a piece for a popular rail industry/enthusiast magazine about the exciting new developments in freight train technology, but sadly, the plan never came to fruition.

Here’s something of what I wrote back then:

“The past few years have seen some important changes in the way rail freight services are operated throughout Europe – changes which have not been implemented so rapidly or effectively in Britain. It is perhaps more than 30 years since radical changes were proposed and implemented on British Rail, in the aftermath of the Beeching Plan. In 1996, though, the introduction of the Babcock Rail/Thrall piggyback vehicles offers the scope to attract a wider range of freight traffics back to rail network.

Freight nowadays travels commonly in ISO containers, and despite Freightliner services, and fragmented developments of long haul freight, hundreds of articulated lorries are a common sight on Britain’s motorways, often carrying single containers. The more recent introduction of piggyback and swap body vehicles has improved the railway’s ability to attract traffic from the roads, but its adoption in the UK has been much slower than the rest of Europe. A particular example of the successful development of such intermodal services, are the trans-Alpine piggyback workings, where articulated lorries and their trailers have been a feature for some time. In the UK, a Piggyback Consortium was established a couple of years ago, largely inspired by Eurotunnel, and seeking ways to establish a corridor between the Channel Tunnel, Scotland and Ireland, using the West Coast Main Line.   A variety of other freight forwarders, joint ventures, and other business combinations have been set up in recent times, with a view to exploiting the through running offered following the completion of the tunnel.”

ewsBack in 1993, shortly after the privatisation of British Rail, the freight services operated by BR’s freight sectors were taken over by the American owned EWS Railway – or English, Welsh & Scottish if you prefer.  At that time, the physical infrastructure was owned by Railtrack, and neither of these “businesses” were a success, and yet the prospect of 1992’s “Big Bang” – the European single market appeared to open up possibilities.

Plans to implement the new, daily, piggyback rail service between London and Glasgow in the Spring of 1996 were advanced, and according to the “Piggyback Consortium”, with essential loading gauge changes over the route set to cost £70+ million.

The purpose of this innovation was to take much of the long haul “juggernaut” lorries off the UK roads, resulting in less environmental damage, to say nothing of the costs to repair and maintain motorways and trunk routes.   Road lorries were becoming heavier and heavier, from 38 tonnes, to 40 tonnes, and even 44 tonnes – but their use needed Government approval.

“The growth of intermodal activities throughout Europe was mirrored for a time in the UK, during the early 1990s, with such initiatives as ‘Charterail’, using Tiphook Rail’s “swing centre” vehicles, various swap body designs, and the the ‘Trailer Train’ projects. The demise of ‘Charterail’ in 1993 brought a premature pause, in the expansion of combined road and rail freight developments. Shortly after the demise of Charterail, Tiphook were keen to re-introduce their innovative vehicles, and attract road freight traffic, whilst Boalloy Industries resurrected the road-railer idea in 1993. The most recent development of this latter included the first use of ‘curtain sided’ trailers, with road and rail wheels, and variable design geometry of the body, to fit the British and European loading gauges.”

At the time, the UK Government seemed unable to come to a decision about permitting the use of lorries with these increased axle loads, and the delay in finalising a policy contributed to the demise of the piggyback proposal.

The cost of freight movement was also fairly high on the agenda at the time:

“In Britain, the cost of moving freight by road is enormous, and represents a cost (estimated in 1993, and published in the Financial Times in February) to the taxpayer of around £18 billion annually. Against this cost, the revenue from road freight for the Government is only £14 billion, representing an annual loss to UK, and cost to businesses of around £4 billion every year.”

That was 25 years ago – and whilst the DfT and ONS produce a pl;ethora of figures on goods moved, goods lifted, by mode and region, getting the same leve of detail on the cost of those movements is not as easy as it was a quarter of a century ago.  I’d love to publish both volumes carried and the cost today as a comparison, but the numbers are not readily available – just like train performance figures.

Unless of course you know different?

The rest of my original item is available below if you fancy a read:

Piggyback Feature Cover

Of course it’s different today isn’t it?

Interesting Links

The Independent

Railway Gazette

-oOo-