Hong Kong Metro – 40 Years On

Standard

It was once described as the largest building project in Asia, and it carried its first fare paying passengers on 1 October 1979 when the 8.5km section of the Metro between Kwun Tong and Shek Kip Mei was opened to the public.

Mtrc79It is also 40 years ago this month that another order was placed with Metro-Cammell for the growing Hong Kong MRT, just three years after they were awarded a £35 million order for 140 trains in November 1976. GEC traction and Metro-Cammell’s combined success with the first orders, was followed in November 1979 by another £40 million order for a further 135 multiple unit vehicles for the Kowloon-Canton railway.   This came hard on the heels – just five weeks later – of the order for a further 150
 metro cars worth £50 million for the MTR routes.

Original MRT train - from Railpower 39

Almost straight out of the box. An original Metro-Cammell built MRT train for Hong Kong. Though much changed in appearance, passenger facilities and traction control systems, they are still at work today.

By that time, contracts worth over £100 million for electrical, mechanical and civil engineering work had already been placed with UK engineering firms. The initial multi-contract E11 awarded by the MRTC involved GEC Traction and Metro-Cammell, requiring close co-operation between the three organisations for the supply and installation of the electrical and mechanical equipment.

The first contracts on the Modified Initial System were placed almost ten years after a report on the problems of road traffic congestion was published by the Hong Kong Government. This was aimed at resolving the territory’s transport question further.

Hong Kong MTR MapThe mechanical and electrical contracts placed by the Hong Kong Government for the Modified Initial System (MIS), were awarded against an extremely tight schedule. The first train set was scheduled for delivery in 1979 and the whole 15.6 route km system was planned to open early in 1980.  The MIS for Hong Kong was swiftly followed by the Tsuen Wan extension, with the obvious demand for more rolling stock, and by 1982, GEC Traction had supplied more than 400 sets to the MRT Corporation.

Alongside this, the 34km route of the Kowloon to Lo Wu line was being doubled and electrified at 25kV a.c. using a simple, overhead catenary construction, similar to that used by British Rail in the UK.

In the export market, the Hong Kong MRT was considered the first major project success for GEC Transportation Projects, established as a subsidiary of GEC Traction and based in Manchester, to design and manage such turnkey projects. The Mass Transit system was entirely new, with two lines providing links between the Central District of Hong Kong Island and the business and residential areas of Kowloon. The mass transit railway used an overhead contact system, electrified at 1500Vd.c. It was intended at one time that this line would be
 electrified using a shrouded conductor
 rail, but it was decided that safety
 margins would be improved using 1500Vd.c. catenary. At the same time, two extensions to the MRT were planned 10.6km to Tuen Wan, and the 12.5km Island Line, with completion in 1986.

Kowloon to Canton (Lo Wu)

Work began on the modernisation of the 34km Kowloon-Canton Railway, in early 1980, with the design, installation, supply and commissioning of the overhead equipment awarded to Balfour Beatty Power Construction.

KCR Car as new

The original emu’s for the Kowloon-Canton Railway, built by Metro-Cammell, with GEC Traction power equipment. Initial tests were carried out on the Tyne & Wear Metro in the UK, before being shipped out to Hong Kong.                    Photo: RPB/GEC Traction Collection

Metro-Cammell
 had also signed a contract with the Hong Kong
 Government to supply 135 electric
 multiple unit vehicles, to operate 
inner and outer suburban services on the
 Kowloon Canton Railway, which was being
 modernised and electrified. The fleet of rail
cars, worth £40million, were designed to be operated as
 three-car sets with up to four sets running in 
multiple.

The electrical equipment and traction power infrastructure was again being supplied by GEC Traction, from Preston and Stafford, with the MRT and extension lines electrified at 1500V d.c overhead, and the Kowloon to Canton route at the standard 25kV a.c., overhead.

Rolling stock

The trains for both the
 Mass Transit and Kowloon-Canton 
Railways, were built by Metro-Cammell. The original mass transit cars
 had a very high capacity, with seats 
for 48 passengers, and standing room
 for more than 300, in a length of 22m
and overall width of 3m. At the time, the MRT cars were believed to have the highest capacity of any metro car in the world. With such high density, getting passengers on and off required the provision of five pairs of sliding doors on each side of the car.

GEC Traction Hong Kong BrochureThe cars for
 the Modified Initial System, and Tsuen
Wan Extension were arranged in six-car formations, and due to the demanding operating requirements, all axles were motored, to give a nominal acceleration of 1.3m/s 2. Though this was increased in practice, because many of the stations along the route were constructed on ‘humps’. The MRT cars, ultimately in eight-car formations were required to operate at 90 seconds headway between trains, and a two minute intervals with ATO (Automatic Train Operation) in use.

The body shell was common for the three types of car on the KCR, and similar to that for the Hong Kong Mass Transit cars. They differed largely only because the KCR sets had fewer side doors, and narrower gangways between cars than the MRT vehicles. Electrically the KCR propulsion equipment was almost entirely derived from that supplied to British Rail.

GEC Traction supplied the propulsion equipment, which included conventional, camshaft control systems,· although consideration had been given in the early stages to using more advanced, thyristor chopper control. An important advantage of using chopper control is the system’s ability to regenerate during braking, but the hump layout ofmany ofthe mass transit stations rendered its application less useful. By 1982, Metro-Cammell had received orders for 558 vehicles for the mass transit system, with the final contract covering 22 power and 106 trailer cars for the Island Line extension. A total of 18 powered cars were ordered with thyristor control equipment in later years, in orders worth some £l0m.

In the UK, during the 1970s, the Tyneside Metro was constructed, which proved beneficial for both Metro-Cammell and GEC Traction, since te first Hong Kong MRT cars were sent for trials on the Tyneside Metro’s test track, prior to dispatch to the Far East.

MTR-train

Still recognisable as a Metro-Cammell MTR train, despite the modifications to the front end, as the train enters one of the elevated stations on this hugely busy system.                 Photo: ThomasWu726 – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6005011

The orders for Metro-Cammell and GEC Traction continued to come in during the 1980s, with additional MTR trains for the Island Line extension, and more three-car trains for the KCR. The last order for what was later classed as M-Class trains, were delivered from Metro-Cammell in Birmingham in 1988/89. However, it was not the last order, as in 1992, and order was placed with GEC Althom (who had by then acquired Metro-Cammell), for another 64 cars, for the MRT.
The MIS trains built by Metro-Cammell were – indeed are – classified as “M-Stock” by the MRT in Hong Kong, and they have undergone various improvements and changes. The initial modifications included altering the front end, to “modernise” its appearance, and the fitting of passenger information systems. All of the original builds were fitted with GTO Chopper control between 1992 and 1995.

This final order included an option for 24 further vehicles, and all 88 were supplied to Hong Kong as a set of parts, which were assembled at the Kowloon Bay Depot. Some of these – by now classed as H-Stock – were refurbished for use on Hong Kong’s Disneyland Line.

The original Kowloon-Canton units were designed for longer journeys, and included slightly different layouts or inner and outer suburban trains, but the general construction is similar to the mass transit trains, with main structural profiles common to both designs. In three-car sets – up to four sets could be coupled in multiple to give a 12-car train), the outer suburban sets have a capacity for 884 passengers and 961 for the inner suburban sets. With full width driving cabs at each end, every three-car set is a self-contained unit.

We see climate as a 21st century issue, but of course in tropical, and sub-tropical climates, there has always been the ever present problem of torrential downpours, from storms – be they hurricanes or typhoons, along with dramatic temperature variations. The climate is such in Hong Kong, that the vehicles, and their passengers were expected to withstand extremes of temperature, from 0 to 40 degrees, up to 100% humidity, and even required to run through flood water in some sections, as a result of the impact of Typhoons.

hong_kong_metro

The original Metro-Cammell built KCR trains were refurbished in the late 1990s by Alstom. This view taken in the Hong Kong Kowloon Bay Depot workshops shows work being carried out.      Photo: Alstom/RPB Collection

These trains are still in service today, but have undergone a number of changes, and the original Hong Kong MTR and Kowloon-Canton Railways have seen considerable changes and modifications since the 1980s.  The original KCR trains were converted by Alstom to 12-car sets, and the original 3 sliding doors were increased by the adition of a further 2 doors per side, and an emergency door in each cab front. The cab fronts were also modified, and entirely new passenger information systems were installed – all of this work was carried out between 1996 and 1999, to extend the life of these trains. Further changes included the fitting of ATO/ATC control systems, and today, 20 years later, they are still in use – now classed as Mid-Life Refurbishment Train (MLR).

A196 葵芳南咽喉

A196 entering Kwai Fong Station – March 2019    Photo: N509FZ – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=76984682

So much has changed over the years in Hong Kong, what with the new airport at Chek Lap Kok, and the suspension bridge carrying the metro to the airport, along with further new lines, and a link to the Disney resort. On the railway, several refurbishments of the original M-Trains – which are still running, and the fitting of automatic train Control (ATC), the now almost universal Platform Screen Doors on metros around the world – but the trains from

MTR_first_Q-train_in_Qingdao_Sifang_factory_test_track

First of the latest Q-trains that will replace the old Metro-Cammell stock for Hong Kong’s MTR. Here seen at the Qingdao Sifang factory test rack. Photo: Zhongqi Qingdao Sifang Locomotive & Rolling Stock Co., Ltd. – http://www.crrcgc.cc/Portals/36/BatchImagesThumb/2018/0129/636528335151471991.jpg, CC BY-SA 4.0  https://commons.wikimedia.org /w/index.php?curid=81272688

According to reports announced in 2015, the MTR Corporation is to spend HK$6 billion on its largest- ever order of trains from a mainland manufacturer. 93 eight-car trains will replace all of the Metro-Cammell currently operating on the Kwun Tong, Tsuen Wan, Island and Tseung Kwan O lines.
Washwood Heath are still running – for now.

Mainland maker CSR Qingdao Sifang is delivering the trains between 2018 and 2023.

Links:

 

-oOo-

North American Steam

Standard

As is well known, steam power was invented and developed in Britain country for both stationary and locomotive purposes. Its introduction and use in the United States very likely came about as a result of illegal activity here in England. At around the end of the 18th and beginning of the 19th century, it was deemed an offence by ·the government of the day to transmit any information about the development or use of steam power to North America. In fact it was punishable by a one-year prison sentence in addition to a £200 fine! But, evidently news of James Watt’s success was transported across the Atlantic it would appear that industrial espionage is not a modern phenomena!

The first practical use of steam power, as applied to railways, in the USA, was first witnessed in the shape of locomotives imported from England by the Delaware & Hudson Canal Co., which operated a sixteen-mile horse and gravity operated coal railway in Pennsylvania. The first steam locomotive to run in the USA was in fact the English built “Stourbridge Lion”.

Replica Stourbridge Lion - United_States_National_Museum_(1956)_(14781532311)

A replica of the first steam loco to run in the USA – built in 1932 by the Delaware & Hudson Corp.   Photo: Internet Archive Book Images https://commons.wikimedia.org/w/index.php?curid=43475790 

Best friend

Built at West Point Foundry, the “Best Friend of Charleston” was the first home built steam loco for a US railroad. Photo courtesy Norfolk Southern Corp.

The first American built locomotive to be operated by an American railroad, was built at the West Point Foundry in 1830 and made its inaugural run for the South Carolina Canal and Railroad Co. of Charleston, on Christmas Day 1830. The locomotive was appropriately named the “Best Friend Of Charleston”. In appearance it hardly resembled a steam locomotive as we know it at all, powered by a vertical boiler positioned behind the driver, driving four coupled wheels it was not entirely dissimilar to the rather less successful “Novelty” locomotive, entered for the Rainhill Trials in England the previous year. But, it was a beginning, from which the North American steam locomotive was developed, ultimately to produce some of the World’s largest and most powerful steam locomotives ever to be built.
 In the early years of railway development, steam locomotive design in the USA progressed along similar lines to that of their European counterparts.

But then, there came to be a number of what at first could be seen as small, technical differences, providing a divergent path along which North American loco. design progressed. One of the principal foundations to this alternative to the British school of design, was the predominant use of bar frames as the principal technique of chassis construction, whereas in Britain, plate frames were the preferred method. Although bar frame techniques were actually first Introduced in the U.K. by Edward Bury, their development in the USA resulted ultimately in the use of techniques for manufacturing the chassis or frames of steam locomotives as enormous one piece castings. In many cases with cylinders and ancillary items of equipment ”cast on”. Style, an arbitrary idea in itself, was possibly the one most obvious difference between North American and British types.

North American 2 copy

The first cantilever trestle bridge in the USA, carrying the Cincinatti Southern Railroad across the Kentucky River, with a typical passenger train of the period. The “High Bridge” was opened in 1877, and rebuilt in 1911 – this view is of the original bridge. Photo courtesy Norfolk Southern Corp./RPB Collection.

Whereas in this country designers placed great emphasis on the aesthetic appeal of their machines, the era of elaborate ostentation in the USA reached a peak in the 1860s and. 70s. These then gave way to more logical concepts of the steam locomotive as a machine, where it was not a sin to trail pipework and fittings
 on the outside of the locomotive, making the working parts more accessible and maintenance infinitely easier.

CP_steam_loco

A recreated Central Pacific # 60 steam locomotive at the Golden Spike National Historic Site in Utah          Photo: Mr Snrub at English Wikipedia. – Transferred from en.wikipedia to Commons., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3488328

To many of us though, thinking of nineteenth century design in the USA, immediately there comes to mind the wood burning 4-4-0 types, replete with ‘cowcatchers’, ornate bell and enormous chimneys. (Diamond stacks as they were known.) These locomotives were a tradition, if not a legend of North American railroads, and engendered a folklore and many legends of their own., from ‘Casey Jones’ to the ‘General’. The latter, in particular, having quite an entertaining history, culminating in its seizure by Union forces during the Civil War. The elaborate ornamentation of some of those mid-nineteenth century designs achieved well nigh indescribable levels, with gold plated scrollwork and paintwork and lining schemes that would have done justice to any regal palace!

By 20th century standards such locomotives were small, yet it’ was with just such engines as these that the vast mid-west and western seaboards of the USA were penetrated. Possibly the most outstanding achievement being the linking by rail of both east and west coasts at Promontory, Utah on May 10th 1869.

Alabama Southern 4-6-0 - 1905

Typical of US motive power at the beginning of the 20th century was this 4-6-0 on the Alabama Southern Railroad in 1905.    Photo by: By Internet Archive Book Images. https://commons.wikimedia.org/w/index.php?curid=43245503

The locomotives of the Central and Union Pacific Railroads were brought
 to within feet of each other and the ceremony completed by driving in a golden spike. From this point, railroading in the USA entered a period of explosive growth, as the government endeavoured to foster settlement of the West. New routes and companies sprang into existence, almost on a par with the ”Railway Mania” period in this country. In terms of Locomotive design though, there the resemblance ended. Railway companies in this country, for the major part, relied on their own designs, whether built in their own workshops, or by contractors. In the USA however, contractors to a much greater extent were relied upon to produce the designs as well as constructing the engines.

There emerged the idea that locomotive manufacturers as specialists in design and construction of steam locomotives would develop their own ranges of ‘standard’ designs, to be bought virtually, “off the peg”. Naturally there were exceptions, though in the sphere of technical development, the manufacturers were often first in the field. This approach was not unknown in this country, but developed to a much greater extent in the USA. A resultant feature being that whereas here it is traditional to refer to a class of locomotive by its owner and designer; in the USA it is almost invariably that of the manufacturer. The names of which were virtually household in this country also; Baldwin, Lima, Alco, etc. Many of these companies’ products were owned by almost all railroads, where the manufacturer, being a specialist, designer and builder, could supply in greater numbers than could the railroads, who were left free to concentrate on the business of carrying passengers and freight.

In the early years of the 20th Century, locomotive design in the USA was moving towards progressively larger types, with which, ultimately, that country became world famous. Its largest locomotives though, owed their development to a French engineer. These were enormous articulated designs, capable of hauling the heaviest of loads, and often in many cases, their tenders alone were larger then the largest British Pacific locomotives, indeed, particularly with the articulated types of the Union Pacific and Norfolk &Western Railroads, even the fireboxes could be bigger than an average living room.

AAR 7 copy

A picture to evoke nostalgic memories of steam, as a pair of Northern Pacific’s giant Mallet articulated locomotives stand in the yards at Missoula, Montana, and ready to handle the huge transcontinental freight working. Photo courtesy; Association of American Railroads.

The most popular form of articulation in N. America was the Mallet arrangement, whose originator was the French engineer M. Anatole Mallet. Basically it consisted of two separate chassis supplied by a single boiler, the leading chassis being pivoted about, the rear. Principle wheel arrangements of this design were of the order of 2-8-8-2, 4-6-6-4etc. Although originally designed to make use of compounding arrangements, most of the N. American types were simple expansion machines, Such locomotives were designed primarily for heavy freight haulage, although on the Union Pacific, a smaller version of the enormous 4-8-8-4
 “Big Boy”, albeit a not much smaller 4-6-6-4 type, was intended for fast, long distance passenger turns. (Long distance on the Union Pacific, was the 5000 odd miles between San Francisco and Chicago). Many railroads in the USA used the articulated types, but there were of course some quite remarkable exceptions. Notably, on the Pennsylvania Railroad, whose rigid frame 4-4-4-4 and 4-4-6-4 locomotives, known forever as Duplexii, were of comparable proportions to the articulated types. Built during the “Streamline Era” and sporting an air smoothed casing, these were really spectacular designs.

C&O Class K4 at Chief_Logan_State_Park_-_C&O_2755

C&O Class K4 at Chief_Logan_State_Park, as preserved at Logan, West Virginia. 92 of this 2-8-4 design were built for C&O, where they were known as the “Kanawha” type, and although a number of other railroads operated them, they were also referred to as the “Berkshire” type.     Photo By Brian M. Powell, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9374221

 

 

 

 

 

 

 

 

 

 

 

 

Santa Fe 5011 Texas Class 2-10-4 No.5017

Santa Fe “5011” “Texas” Class 2-10-4 No.5017. Built by Baldwin in 1944, this example is now at Green Bay Railroad Museum, 8/70. Baldwin started building these in the 1930s, and they were the heaviest (247.5 tons) and most powerful (T.E. 93,000 lbs) “Texas” type ever built and also had the largest piston thrust (234,000 lbs) of any locomotive.                 By Hugh Llewelyn – 5017Uploaded by Oxyman, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=24387751

Steam in the USA reached its zenith in the, early 1930’s, at the beginning of that decade there wore over 56000 locomotives in service. It was at this time, marking the ·beginning of the “Streamline Era”, that some of the most impressive and largest locomotives were built. The largest, as we have noted, were the mammoth Mallet articulated types, for heavy freight haulage. On the passenger side, as in this country, passenger schedules with improved timings, demanding higher speeds, dictated the design of more powerful locomotives, capable of handling the heaviest loadings. But, whereas in this country passenger locomotive design reached a peak with the heavy 4-6-2 Pacific types, in the USA. passenger locomotives became even larger. Amongst the largest and most impressive of these were perhaps the 4-6-4 Hudson and 4-8-4 Niagara types for the New York Central Railroad.

North American 1RPB Photo 488 NYC Niagara No 6000

Classic North American steam locomotives for express passenger or freight services, are perhaps nowhere better illustrated by the streamlined 4-6-4 “Hudson” and 4-8-4 “Niagara” designs for the New York Central Railroad.

Photos: Assoc of American RRs / RPB Collection

Of these, the former was probably the more popular for passenger haulage, the design being used in quantity by most, if not all of the U.S. Class 1 railroads. The New York Central’s design was possibly the most successful, though seeing a variety of improvements and alterations from its first inception, the overall design remained the same, its capacity for sustained high speed haulage of heavy loads was surpassed by few, if any others.

It might well be imagined that all North American steam locomotives were of massive proportions, such however would be far from the case, though it must be said that even the “Branch Line” locomotives were more often than not
 as large as many British main line types. Again, not all locos. were conventional in design. Apart from the several narrow gauge lines, the USA possessed some quite unique examples in the “Shay” and “Heisler” geared drive locos. intended for use on logging railroads, where the gradients, curves and clearances were often extremely severe.

The changeover from steam to diesel traction was begun earlier than here, but unlike this country, when the final elimination of steam took place, the railroads had a fairly lengthy experience of the new motive power behind them. The first diesel appeared on the Central of New Jersey Railroad in 1925. It was not an immediate success however, its power to weight ratio made it uneconomic, but these were problems of course, that were subsequently overcome, since 27 years later, the number of diesel locomotives outweighed that of steam. An interesting comparison can be made with these figures; in 1929 there were only 22 diesels in service, compared with 56,936steam types, by 1955 diesels were in the majority with 24,786 and only 5,982 steam. For steam, the worst years and complete elimination came between 1955 and 1962. During this period the number of diesels rose by 3,318; steam locomotives being reduced from 5,982 to 51! There are still, at the time of writing, seven steam locos in service on Class l railroads, six of which are narrow gauge types.

-oOo-

Further Reading & Useful Links:

From Railway Matters: New York Central Giants

 

 

Deltics in Retrospect – Part 2

Standard

The 22 ‘Deltics’ lasted 20 years in high-speed main line service between London and Edinburgh, until they were replaced by the equally successful HSTs. The English Electric Type 5, later Class 55 has achieved as much fame and respect in the eyes of rail and engineering enthusiasts as the equally famous steam locomotives of Class A3 ‘Flying Scotsman’ and Class A4 ‘Mallard’ steam era 4-6-2 pacific locomotives.

D9019 at Bury on ELR

D9019 “Royal Highland Fusilier” at work on the East Lancashire Railway in the 1990s, seen here at Bury in classic two-tone green, but with full height yellow warning panels.                 © Rodger Bradley

Aside from their innovative engine design, and impressive power output, they turned in some quite remarkable performances with heavy trainloads over long distances. One of the most impressive was that of D9008 (55 008) “The Green Howards”, which, in 1978 hauled 10 coaches (343 gross tons) between York and London at an average speed of 97 mph – start to stop! (This is on record by a J. Heaton of the Railway Performance Society).

Thankfully 6 of the class have been preserved and are operating on a number of heritage lines, from the East Lancashire Railway, Great Central, Keighley & Worth Valley, and Severn Valley, amongst others, to numerous rail tours around the country.

Half of the preserved examples are now available for running on the main lines once again, although one of their number D9016 “Gordon Highlander” is undergoing a major overhaul, but back in the late 1990s it was used, along with sister locomotives on charter rail tours and specials, including the Venice Simplon Orient Express.

It is perhaps something of an irony that 16 of the class were scrapped at BREL’s Doncaster Works between January 1980s and August 1983, just as BREL was building the Class 58 freight locomotive, and Doncaster Works itself was finally closed in 2007 – though it had been run down for some years before.

When the class was built at Vulcan Foundry, the railway industry was still home to major engineering concerns – not least of which were the works at Newton-le-Willows, where these 22 locomotives were completed to the order from English Electric. Oddly perhaps, the order was placed through English Electric’s Bradford electrical works, and not from the nearby Dick, Kerr works at Preston, which had a long established relationship with the company, and where the original Deltic was built.   The production version, with the design ‘tweaks’ to the bodysides and appearance, were completed at just under two locomotives per month between March 1961 and April 1962, and were to have an operating life of just 20 years.

D9015 - Tulyar - cropped

D9015 “Tulyar” on a normal express service, at high-speed on the East Coast Main Line, where they were the definitive high-speed train of their day. The locomotive is in full original livery in this view. © RPB/GEC Traction Collection

Build & Operations

The Deltics were all built at the Vulcan Foundry, Newton-Ie-Willows, between March 1961 and April 1962, though the order was placed with English Electric for their construction in 1960. Listed here are the building dates:

DELTIC Running numbers

From new the Deltics were allocated to three depots; Finsbury Park in North London, Gateshead in the North East and Edinburgh Haymarket in Scotland.

The original allocations up to and including 1964 were:

  • 34G Finsbury Park – D9001 /3/7/9/12/18/20;
  • 52A Gateshead – D9002/5/8/11/14/17;
  • 64B Haymarket (Edinburgh) – D9000/4/6/10/13/16/19/21.

The allocations in 1978 were:

  • FP Finsbury Park – 55001/3/7/9/12/15/18/20;
  • GD Gateshead – 55002/58/11/14/17;
  • HA Haymarket (Edinburgh) – 55004/6/10/13/16/19/21/22.

Essentially they remained at these locations until their withdrawals began in 1980.

By June1961 the first six locomotives had commenced regular long distance passenger workings, but rostered in true steam locomotive style, since a Finsbury Park Deltic would work the down ‘Aberdonian’ on Sundays, returning the following day with the up ‘Flying Scotsman’. Similarly, Scottish Region Deltics worked out on the 11.00am Edinburgh to King’s Cross as far as Newcastle, returning with 11.00am ex King’s Cross. Later, their range was extended to work through to London and return on th e ‘Talisman’ and ‘Aberdonian’ services. Working what were traditional steam locomotive diagrams alongside English Electric Type 45, was undoubtedly an under-utilisation of Deltic power.

The first impressions of Deltic capability was displayed with some substantial accelerations of the principal East Coast services in the summer timetables introduced from June 18, 1962. It was widely recognised that the inclusion of a six hour timing between London and Edinburgh was an achievement on a par with the pre-war lightweight, streamlined ‘Coronation’ train – but. the Deltic diagram included no less than six such workings. The trains concerned in the in initial speed up were the ‘Elizabethan’, ‘Flying Scotsman’ and ‘Talisman’, the last two covering the 268.35 miles between King’s Cross and Newcastle in just one minute over four hours; an average speed of 66.8mph. Other named trains included in the accelerations were the ‘ Heart of Midlothian’, ‘Tees Tyne Pullman’, ‘ Yorkshire Pullman’, ‘Car-Sleeper Limited ‘ and the ‘Anglo Scottish Car Carrier’. Of these, the up ‘Tees Tyne Pullman’ was booked to provide the fastest average over the 44.1 miles from Darlington to York of 75.6mph. Of the night runs, some of these provided examples of the most dramatic accelerations, including no less than 77 minutes for the down ‘Car Sleeper Limited’ between London and Edinburgh with Deltic haulage. Deltics were also booked for both the 8.20pm down ‘Mail’ from King’s Cross, and the corresponding 8.20pm up train from Newcastle. With an average rostered load of over 450 tons, these services were accelerated by 40 and 33 minutes respectively.

D9013_The_Black_Watch(8191899366) copy

D9013 “The Black Watch” (later 55 013) in BR two-tone green livery and ½ height yellow warning panel enters Kings Cross in July 1966 with “The Flying Scotsman” from Edinburgh Waverley complete with the then new headboard which was carried for only a few years. By Hugh Llewelyn CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=24383446

The pattern of high speed Deltic hauled services was continued into the winter of 1962 and beyond, their reliability and availability built into a reputation for all round performance a success second to none. Of the pilot scheme diesels, many were dropped, though despite the early unreliability of the medium speed engines with electric transmission, a BR report of 1965 came down firmly in favour of that arrangement. Even so, the Deltics remained, a lone example of the successful mating of a high-speed diesel engine with electric transmission.

Standardisation in 1967 kept these 22 locomotives in the BR fleet as Class 55,and with the emphasis on higher powers, the National Traction Plan listed a basic main line stud to comprise classes; 20, 25, 27, 31, 33, 37, 40, 45, 46, 47, 48, 50, 52 and 55, to be achieved by 1974. An interesting inclusion was the Class 48, an improved Brush Type 4 that never materialised.

By the time of this particular spate of rationalisation, the Deltics had of course eliminated steam from all the principle East Coast workings, and operated intensive cyclic diagrams, and broke completely from steam traditions in not being allocated to any particular depot or Region, working throughout as required. With the introduction of the Brush Type 4 locos, much secondary work was taken from the Class 40s, the Deltics early stable mates, and occasionally, the Brush types would deputise for Deltics in the relatively rare event of a failure of the latter.

The_'Napier'_Bellow_-_55_009_(14675011249) copy

Class 55 English Electric ‘Deltic’ diesel locomotive No. 55 009 “Alicydon” roars up Holloway Bank out of Kings Cross with an Inter-City express for the North East in the mid 1970s. The green livery has gone, and full height warning panels in use. By Barry Lewis CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=44987568

Mechanically, the Deltics were required to achieve a standard life expectancy of 25 years, even allowing for the fact that they were the most intensively worked of all the BR diesel types. From new this meant that they would become life expired in 1986-7, and al though the rate of deterioration was virtually nil over a period of ten years, between say 1966 and 1976, in the last couple of years of operation withdrawal began to increase steadily. The last were taken out of service in May 1982. It is interesting to note that the first five years of the life of the Deltic engines – the running in period were guaranteed by the makers. With the introduction of the IC 125s, or HSTs on the East Coast main line the Deltics were gradually relegated to lesser duties, including excursions and inter-regional running, being latterly quite frequent visitors to the LMR. On 28th February, 1981, Deltic No 55022 (D9000), Royal Scots Grey, had completed 20 years service, the first of the class to do so, perhaps not surprisingly since it was the first production loco to enter service. In the event the occasion was marked by loco No, 55022 working the 12.20 King’s Cross to York with a special headboard provided by the Deltic Preservation Society, and a photographic exhibition was opened at the National Railway Museum by Deputy Keeper Mr P. W. B. Semmens. One loco is officially preserved at the NRM, 55002 The King’s Own Yorkshire Light Infantry.

Liveries

There were two main liveries carried by the Deltics, with some detail variations. The first schemes carried by these locomotives were what might be termed the standard green livery for diesel types as introduced with the first pilot scheme classes of 1957-8. The first BR schedule covering the painting of diesel locomotives in green livery was issued in 1956, and although some of the details were not really applicable to the Deltics, the basic treatment and processes were the same. It is interesting to note that in that first schedule, the green livery included a black roof (specification 30, item 36), and steam style express passenger lining and transfers – the lining being in orange and black at waist and skirt level on the body sides.

D9000

D9000 (later 55022) – the first of the class in original colours, captured on 17th August 1987 at a TMD open day – possibly Tyseley in Birmingham Photo: By Peter Broster CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=31876267

The Deltics were initially painted to the modified specification 30A, and covered by a schedule produced at the time of their introduction in 1961-2. This divided the painting processes into a number of areas, but those of principal interest to the modeller are of course the superstructure (exterior surfaces), roof, bogies, running gear and underframe. Wheels, axles and bogie frames were given one coat of primer to specification30A, item 1, and one coat of black lacquer, to item 40 of the same specification- though not of course to the wheel treads! Brake gear and exterior surfaces of the main framing .was treated to a final coat of general purpose black. Bufferbeams and stocks (with the exception of the short section of fairing covering part of the stocks) were red to Specification30A, item 9, with the colour a close match to BSS 2660-0-005. On top of this was a single coat of varnish. All exterior surfaces of the fuel and water tanks were given a coat of general purpose black whilst the battery boxes were given two coats of Black Acid Resisting Varnish (Specification 30A, item 4l).

Driving cab positions

Cab interior of Deltic in build. © RPB/GEC Traction Collection

Following various preparatory processes, the main livery areas of the body side panels were treated to one coat of primer, one coat of grey undercoat, one of locomotive green sealer/undercoating paint and a final coat of locomotive green enamel. This latter was Specification30A, item 34, and extended over the entire loco bodyside panels from skirt to gutters. A deep skirt or valance on the lower bodyside stopping just short of theca b door entrance sills, was picked out in a lighter colour, known as Sherwood Green. This was carried completely around the locomotive, and following the application of running numbers and crest, a single coat of locomotive exterior varnish was applied.

The roof area between the gutters was grey, and described officially as Diesel Locomotive Roof Paint, Specification 30A item 57. Cab windscreen and side window surrounds were picked out in white, originally with small yellow warning panels applied to each nose end, surrounding the four character train indicator boxes. The colour was to BSS2660-0-003, and most of the class although built without having warning panels had them applied later, only D9020 and D9021 had them painted on from new. Other non-standard details displayed originally included white buffer heads and drawgear on some members of the class; similarly axlebox end covers were picked out in yellow, as were the equalising beams on D9020 Nimbus – for a time. Window surrounds and boiler room air intake grille beadings were bright finished metal.

Block style running numbers were carried under each of the four cab side windows, in white, and below these were affixed crests of the type first introduced in 1956. Nameplates were carried on the bodysides mid-way between the cabs, and were cast in brass, with the lettering raised from a red background. Though before the locomotives received names a large crest was carried on the bodyside in the nameplate position. Soon after the Deltics were introduced, no more than two years to be precise, the first application of standard Rail Blue livery was made to a Brush/Sulzer Type 4 locomotive, and this standard rapidly became established on principal main line types.

Black_&_White_-_55_012_(14467256225) copy

English Electric Deltic class 55 diesel locomotive No. 55 012 “Crepello” arriving at Kings Cross with an express from the North East. 1976 By Barry Lewis – CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=44987576

On the Deltics, the use of Rail Blue to BR Specification 53, item 13, covered the entire body, including the roof areas. It was alleviated only by the yellow nose, which itself was more extensive than the earlier warning panel, over-running the corners for a few inches. The underframes and bogies remained the conventional black. In recent years however, there has been a trend away from the rather dull uniform appearance of BRs blue locos, initiated largely on the Eastern Region, and resulting in a number of Deltics sporting white cab window surrounds again.

During the change over period from green to blue livery in 1968-69, D9005/17/18 had full yellow ends whilst still in green livery: D9010 also in green, had the new double arrow symbol. In the standard form on blue liveried locomotives this was 2 foot 6 inches long, and fixed under the cab side windows at each of the four corners, with the asymmetric running number behind each cab door. The ‘D’ prefix was dropped at this time also, and with the introduction of the ‘TOPS’ re-numbering scheme in 1972, the 6 inch high numbers of Class 55, in white, were positioned behind the cab doors on the driver’s side only.

The last variation on the Deltics livery has been the repainting for preservation of D9002 (55002), King’s Own Yorkshire Light Infantry, in the original standard two-tone green livery. A pleasing comparison with the standard Rail Blue, and perhaps with just a twinge of nostalgia, it doesn’t appear quite as dull as it did in the early 1960s, when steam was still to a great degree, supreme!

Life After Service & Preservation

No less than 6 of this unique class have been preserved, two D9009 and D9019 are operational for main line service, one D9002, is on permanent display at the National Railway Museum, whilst the remaining three (D9000, D9015, D9016) are under restoration or overhaul. Two of the cabs from D9008 “The Green Howards”, and D9021     “Argyll & Sutherland Highlander” are also preserved as static exhibits.

DELTIC preservedAfter withdrawals took place in the 1980s, British Rail banned all privately owned diesels from operating on its network, but the work towards securing and returning to operational service a member of this historic design began. However, despite an occasional run out to open days, and a trip for D9002 to its final resting place at the National Railway Museum in 1982, nothing further was seen of a Deltic in full service mode until after the privatisation of BR in the 1990s.

DP2 on Yorkshire Pullman trial run

The prototype DP2, with its new English Electric 2,700hp 16CSVT engine hauling then Yorkshire Pullman on a trial run. © RPB/GEC traction Collection

Whilst heritage railways had always been a home for these and many ex BR diesel types, it was not until the arrival of open-access train operations in the 1990s, that, for a fee, the owners of these powerful machines could take to main line running again, under Railtrack, and today, Network Rail.

Of course, as we are all aware, there was a spare Deltic body that gave birth to another famous English Electric diesel design – intriguingly at first carrying the number DP2 – later of course becoming the British Rail Class 50, with a new design of 4-stroke, 2,700hp diesel engine from the same maker. These are described in some detail in the post from the link below.

More useful links:

 

 

 

 

 

-oOo-

Deltics in Retrospect – Part 1

Standard

The DeItics, or rather the 22 locomotives originally designated English Electric Type 5 Co-Co diesel-electric, over a working life of more than twenty years became top favourites with all rail enthusiasts as they carried out the express passenger duties on the East Coast Main Line. And yet, initially, the design was not in tended for the Eastern Region at all, but the London Midland. Following the highly successful operation of the prototype Deltic locomotive, on LMR and ER metals, it was decided to place an order with English Electric for a production version. In essence this retained the twin I8-cylinder ‘Deltic’ engines of the prototype in a stretched body, with a number of other detail modifications, providing BR with what was at the time the world’s most powerful single unit diesel locomotive.

Deltic at NRM large_CD040355

The original “Deltic” prototype Photo courtesy Science Museum Group Collection © The Board of Trustees of the Science Museum Descriptions and all other text content are licensed under a https://creativecommons.org/licenses/by/4.0/

The first three production Deltics appeared in March 1961 and were allocated to the Scottish, Eastern and North Eastern Regions respectively. They were numbered D9000-02 in the then current numbering scheme. They were the result of six years running experience with the prototype; which remained the property of English Electric until its withdrawal and preservation in the Science Museum in 1963. The prototype had experienced only minor problems during the 400,000miles it covered in service, almost all of which centred around the Napier ‘Deltic’ engine. It was in this, in fact, that the unique nature of the Deltic locomotive was contained. The power unit was developed from a design prepared for the Admiralty in the early 1950s for its ‘Dark’ class fast patrol boats – a lightweight two-stroke diesel, opposed piston, water cooled engine. The cylinders-eighteen in all – were arranged in banks of six around the three sides of an inverted triangle – hence the Deltic name. Happily, the engines installed in the rail version had a much more successful career than those for the Royal Navy.

Original Deltic in Preston Works

Prototype Deltic in the erecting shop at Preston Works in 1956 – almost complete. © Rodger Bradley/GEC Traction Collection

The genesis of the ‘Deltic’ design was outlined in some draft notes on English Electric’s history prepared for GEC Traction’s publicity department around 1970, and included this summary:

1952

The development of a completely new ultra lightweight high speed 2-stroke diesel engine by D. Napier & Son, initiated an investigation 
into the traction potential of the new engine. In due course emerged the parameters for the design of a revolutionary single-unit diesel-electric locomotive of a power substantially greater than existed at the time (or 
for some years after it’s subsequent introduction).

Alongside the production of well established designs for export the prototype began to take shape, finally going into proving service on the L.M.Region of B.R. in 1956, the most powerful single-unit d.e. loco in the world with the highest power/weight ratio. With 3,300 hp from its two 18-cyl Napier engines, the “Deltic” loco weighed some 108 tons, max. axle loading – 18 tons.

During extensive service trials, speeds of well over 120 mile/hour were reputed to have been reached (unofficially), due, principally to the extremely smooth riding of the loco under which speeds downgrade could build up without the rougher riding more normally associated with speeds around 100 mile/hour at that time.”

The notes went on to highlight the steady development of English Electric’s diesel engines and its rail traction success. The production “Deltic” locomotives went on to become legends on a par, if not exceeding that of the Gresley or Stanier pacific steam locomotives.

Teething troubles in the design were basically the result of its transfer to rail traction use, and for the prototype, in addition to the two engines it carried, no less than three were maintained as spares. This was partly for test purposes, and partly to seek out the cause and cure for major problems of erratic valve operation. On the locomotive, with two engines, should one fail completely, it was still possible to move using only the one remaining engine.

Ironically, the prototype Deltic was withdrawn from service and returned to the Vulcan Foundry in the same month the as the first production units appeared. A piston failure occurred while the locomotive was working a Kings Cross to Doncaster service, which badly damaged one of the engines, and during March, the power plant, train-heating boiler, traction motors and control system was removed. It was planned to scrap the remaining shell, before the proposal to display it in the Science Museum was made – and fortunately this proposal was successful.

Deltic Prototype from Dec 1955 BR LM Region Magazine

The prototype as portrayed in the December 1955 issue of the London Midland Region Magazine – worth noting is the statement at the foot of the caption, stating that it had been built for export.

The table below gives the leading dimensions and other principal details of the 22 Deltic locomotives, in ‘as built’ condition.

Deltic leading dimensions

* Although when introduced, all the Deltics were fitted with both air and vacuum brake equipment, the latter being required since a majority of the passenger stock was still vacuum-fitted. The air brake equipment was for loco use only, and in 1967-8, the entire class was fitted with train air brake equipment.

DE:5001:1

The BR weight diagram of the production series Deltics, in original condition and running order.

Mechanical Details

(1) Power Equipment and Transmission

The two engines fitted into each locomotive were high-speed two-stroke diesels, each of which developed 1,650hp from eighteen cylinders. The design comprised three banks of six cylinders arranged around the sides of an inverted equilateral triangle, with all the piston heads opposite one another. This meant that instead of having the main crankshafts in the conventional position at the base of the engine, they were positioned at the three apexes of the triangle.

Deltic Engine ViewsThis complex construction, as previously mentioned was a development of a design produced by Napier for the Admiralty. In fact, the rail traction version, designated type D18-25 maintained the same size cylinders as some of the more powerful marine types, which in the 1950s had reached outputs exceeding 4000hp. One benefit gained from the triangular arrangement was the almost complete balancing of the reciprocating forces.

The pistons themselves were oil-cooled with an aluminium alloy skirt, and a dished alloy crown, screwed and shrunk onto the skirt. Three separate camshafts were fitted to the outer faces of the crankcases, with the fuel injection pumps mounted on the camshaft casings. Lubrication of the engine was based on a ‘dry sump system’, and all bearings and gears were supplied with oil under pressure.
The engines were constructed from three separate cylinder blocks and crankcases, secured by high tensile steel bolts – a method of construction reckoned to give a very strong and rigid structure. At the generator end of each engine a set of phasing gears was provided to drive a common output shaft. From the phasing gearcase, two flexible shafts passed through the uppermost crankcases to drive a centrifugal, double entry scavenge blower. The 5 1/8 in bore cylinders were fitted with steel ‘wet’ type liners with nine exhaust ports arranged around part of the circumference at one end of the liner, and 14 inlet ports around the full circumference at the opposite end.

Deltic D9001 - Vulcan Works Photo March 1961

D9001 the second of the class seen here fresh from the paint shop at the Vulcan Foundry works in March 1961. Sporting the two-tone-green livery and BR’s lion and wheel crest on the body side, with white-framed cab windows. © RPB/GEC Traction Collection

The generators attached to the output shaft of the phasing gearcase were self-ventilated DC machines, with a continuous rating of 1,650 amps at 660 volts. The phasing gearcase output shaft to which the armatures were attached rotated at 1,125rpm – the speed being stepped down from the crankshaft speed of 1,500 rpm. The auxiliary generators were mounted above the main generators and driven by a take off shaft from the phasing gearcase at 1 2/3 the crankshaft speed. The 110-volt supply was used for excitation of the traction generator field coils, lighting and various ancillary circuits.

With both engines in operation, the load was shared between the auxiliary machines, and the main generators were connected in series to supply the six traction motors. Should one power unit fail, the system was designed to provide full tractive effort, but at only half normal road speed. The six English Electric Type EE 538 traction motors were nose suspended, axle hung machines, driving the respective axles through a pinion mounted on the end of the motor armature shaft, and a gear wheel on the axle. The motors were force ventilated, from blowers mounted in each nose end, and electrically connected as three parallel groups of two motors in series.

In order to improve the speed characteristics over which full locomotive power was available, two stages of traction motor field weakening were provided. Engine cooling was by means of two roof mounted radiator fans, each engine having a pair of fans driven through gearboxes and cardan shafts with universal joints.

(2) Control systems

Control of engine speed was by means of air pressure actuators acting on the spring loading of the engine governors. Excitation of each main generator was altered through the load regulators – multi contact rotary switches. The opening and closing of the contacts was via the engine governor and oil driven vane actuator. This in turn varied the resistance in the main generator field circuit, keeping the respective engine at full load for that specific position of the power handle.

All auxiliary circuits were supplied at 110volts, for the operation of pumps, blowers, compressors, etc. An electrical control cubicle was provided behind each cab bulkhead, and housed all the principal circuit protection devices. General protection devices included automatic correction of wheel slip, which involved a slight reduction in traction motor voltage and application of sand.

This arrangement for controlling wheel slip was also in experimental use in 1961 on the 2000hp English Electric Type 4 No D255.

In the event of high cooling water temperature, or low lubricating oil pressure, the engine affected was shut down automatically. Faults such as these would be indicated on the control desk in the driving cab, together with boiler shut down and general fault lights. The general fault light was linked to secondary fault indication lights in the engine compartment detailing particular faults, such as traction motor blower failure, low water or fuel level. The low fuel level indicator meant that enough fuel for only 50 miles of running remained.

Grey Folder GEC - 1 5

Just a couple of years after the first production locomotives entered service – DP1, the original ‘Deltic’ was presented to Science Museum in September 1963, after 45,000 miles running. This view was taken on the day of the presentation.       (c) GEC Traction / RP Bradley Collection

(3) Bogies, Running Gear -General Constructional Features

The bogie main frames and bolsters were fabricated assemblies with the headstocks riveted to them. The general arrangement was similar to the prototype locomotive, though the wheelbase at13ft 6in, equally divided, was shorter. Underhung equalising beams of forged steel were fixed to stirrups incorporated in the axlebox assembly, with the stirrups and equalising brackets being provided with manganese steel liners. Similarly, liners were fitted to the wearing faces of the roller bearing axlebox guides, bolsters, side bearers and centre pivots. The load was transmitted to the bogie through the bolster side bearers and four nests of coil springs to two spring planks suspended by swing links from the bogie frame. Dampers were fitted between the bolster and spring planks. Four pairs of coil springs distributed the load from the solebar to the equalising beam.

Deltic in build at Vulcan_RPB Collection

A Deltic bogie alongside the body framing for one of the class in build at the Vulcan Foundry works, at Newton-le-Willows. All 22 were built at Vulcan between March 1961 and April 1962.    © RPB/GEC Traction Collection

This design of swing bolster bogie was also fitted to the English Electric Type 3Co-Co locomotives, and in June 1961,fractures were discovered in the transom webs of two locos, and as a result all locos with this type of bogie were withdrawn whilst a modification was made. This involved the provision of thicker gauge steel for the particular component, and no further trouble was experienced from this source on either the Type 3s or the Deltics. An interesting arrangement of ducting for traction motor cooling air was used, involving a flexible connection to two of the motors through the hollow bogie centre via the bolster, with similar ducting and flexible connections to the third motor. Clasp type brake rigging was fitted, and could be operated directly through the driver’s air brake valve, or operation of the vacuum brake on the train would cause a proportional application of the loco’s brakes to be made. In1967-68 all the Deltics were equipped with a train air brake system for working the latest stock, including air conditioning.

The underframe and body framing was designed as a load bearing structure, built up from cold formed steel sections and carried on two centrally positioned longitudinal members, and rolled steel channel solebars. A steel plate decking was welded to the top of the underframe with wells under the engine/generator units. All exterior and interior panelling was welded with joints ground flush. Fibreglass insulation was provided between the bodyside panels and in the cab, reducing noise and temperature variation. A more than usual proportion of fibreglass was used in the Deltics, with sections being adapted for battery and sand boxes, main cable ducts, instrument panels, cab and equipment compartment doors. The underslung fuel and boiler feed water tanks were welded up from light alloy sheet, and carried between the bogies. Water tanks were insulated and fitted with heating coils. A characteristic steam locomotive fitting was also provided on these advanced diesel locomotives – a water pick up scoop for use on troughs fitted between the rails.

Basically, the body could be divided into five compartments, which were as follows: No 1 end cab, engine room, boiler compartment, engine room, No 2 end cab. In front of each cab, a nose compartment housed various items of equipment. At the No 1 end these included two exhausters, CO2 fire extinguishers and a traction motor blower and air filter. The nose end in front of the No 2 cab – in addition to the traction motor blower and fire fighting appliances – also housed a toilet and the air compressor. In each case, in view of the height of the nose, both Driver and Second man’s positions were on a raised platform within the cab proper, which was provided with an access door on either side. Due to the restriction of space caused by the intrusion of part of the control cubicle into the cab, the two outer doors were sliding, whilst the engine room access doors opened into the cab.

The engines were positioned in. the engine compartments so that the generators faced outwards, ie, towards the cab, and separated by the train-heating boiler. This latter occupied a space12ft I Din in length at the mid-point of the locomotive. It was a Spanner ‘Swirlyflow’ Mk II, with a steaming capacity of 15001b/hr.

D9005 - The Prince of Wales's Own Regiment of Yorkshire copy

D9005 ‘The Prince of Wales’s Own Regiment of Yorkshire’ on a typical high-speed service on the East Coast Main Line in the 1960s. The change when compared to later 1970s and 1980s, when HST sets were used, and today, with electrification is quite dramatic.                               © RPB/GEC Traction Collection

Follow this link for Part 2 – Build & Operations

Further reading & Useful Links:

British_Rail_Class_55  (Wikipedia)

The Deltic Locomotives of British Rail – Brian Webb.  Pub. David & Charles 1982; ISBN 0-7153-8110-5

 

IMG_9395
The Deltic Preservation Society  Screenshot 2019-09-26 at 15.46.24

 

 

-oOo-

Hybrid on Snowdon

Standard

Snowdon, the highest mountain in Wales, and home of the only rack railway in Britain is about to get some new motive power.  Although steam is popular on many of the world’s rack railways, diesel power has gradually been adopted over the past few decades, and now as diesel’s reputation as a pollutant has soarded, hybrids are coming to the rescue.

In its 123+ year history, the 800mm gauge railway to the summit of Snowdon, this line has operated with 8 steam locomotives, all built by SLM in Switzerland, 5 diesel locomotives and 3 diesel railcars.  All of the railcars have been scrapped, along with the diesel-mechanical loco bought secondhand in 1949 have been scrapped.

Two of the steam locomotives – Nos. 7 & 8. built in 1922 and 1923 have been withdrawn and dismantled, with one of the remaining locos – No. 4 “Snowdon”, currently being overhauled.  The remaining steam locomotives remain operational, and all bar one are more than 100 years old.

Snowdon_Mountain_Railways_No12_George_(8985026430)

Built in Leeds by Hunslet in 1992, No12 is named after George Thomas, 1st Viscount Tonypandy. All four diesels are powered by a turbo-charged six-cylinder Rolls-Royce engine giving 319hp. Llanberis Station. Snowdon Mountain Railway. Wales. 26-5-2013                                                         By Alan Wilson – , CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=26899289 

Of the remaining 4 diesel-hydraulic locos, two (Nos 9 & 10) were delivered in 1986, with Nos. 11 and 12, delivered in 1991 and 1992.  These are the newest locomotives – now approaching 30 years of age – in service on the line.

The Snowdon Mountain Railway (SMR) began looking into replacement locomotives five years ago, and this year named Clayton Equipment Limited of Burton-upon-Trent has been chosen as the preferred supplier.

Clayton are a specialist supplier of locomotive for mining, tunnelling, shunting and many other specialist rail applications.  This specialism includes bespoke battery hybrid battery-diesel designs, and the SMR’s  two new locomotives will be commissioned and ready for service for the start of the railway’s 2020 season in spring next year.

Clayton have been involved as a manufacturer in the railway industry since the 1930s, and through various changes of structure and ownership, and now once again as an independent company.

The new locomotives will be driven by High Torque, maintenance free electric motors, powered by traction battery and diesel generator. The diesel generator will be switched off whilst the locomotive is descending, as service braking recharges the battery ready for the next ascent.  It is anticpated that this new design will save costs on both maintenance and fuel, and as lower powered units, complying fully with Euro Stage V emissions requirements, less environmental impact too.

The train configurations with the new locos will also allow an extra 12 passengers to be carried on each trip.

New technology for the 21st Century on the UK’s only Abt rack railway, and hopefully too, continued success for both the SMR and Clayton Equipment.  We look forward to 2020 with interest.

Useful Links:

-oOo-

 

St Rollox – Gone But Not Forgotten

Standard

This month saw the last of the once huge manufacturing railway workshops in Glasgow closed.  The facilities were established in the Springburn district of the city by the Caledonian Railway in 1854, brining to an end the 169 year history of building, repairing and maintaining railway locomotives and rolling stock on a 15 acre site.  The St Rollox site was just one of three major sites in the area – the others being the former North British Locomotive Co works, which closed in the 1960s, and of course the Cowlairs Works.

Screenshot 2019-07-31 at 17.22.23As a loco works for the Caledonian Railway, it produced many fine steam types, but the works’ status changed dramatically after the grouping of 1923, and under the ownership of the LMS, no new building was carried out there after 1927.  As a workshop responsible for maintenance and repair, this was the position of St Rollox for the next 40 years.

At the time of nationalisation the works employed 3,382 staff, whilst neighbouring Cowlairs employed a little over 1,200 in 1949, with work being transferred away to Horwich.  Interestingly, at the time the staffing of railway works came under scrutiny, in 1962, both Cowlairs and St Rollox employed just over 1,900 on each site.  Plans were laid to modernise and re-equip the works, and in order to do that, most of the work in St. Rollox was moved temporarily into Cowlairs.  Once re-equipped the plan was to transfer all work into St. Rollox, and close Cowlairs. The new St. Rollox was re-named the Glasgow Railway Works – at least on paper. In addition to repairs and maintenence of motive power and rolling stock, manufacture light alloy containers and the repair of all signal and telegraph equipment was to be set up. The total labour force by 1966 will be approximately 2,800 men.

St Rollox in Glasgow’s Springburn area was at the heart of railway and locomotive engineering in Glasgow, and Scotland, the work to modernise the works was expensive, costing more than £1 million, but the eventual outcome was closure of Cowlairs in 1968. All of the Scottish works of BR were discussed in great detail during the 1960s, and the social and economic consequences of decisions taken in London were not lost on local MPs.

The same seems to be happening again in 2019.

05.06.82_Glasgow_St_Rollox_Works_26028_(6159479398)

Inside one of the workshops of BREL Glasgow St Rollox Works on an organised visit with the Railway Correspondence and Travel Society. Seen closest to the camera is 26028.           By Phil Richards from London, UK – 05.06.82 Glasgow St Rollox Works 26028, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=26695179 

St Rollox became part of BREL with the 1980s restructuring of BR workshops, and following the privatisation of BREL in 1988 was operated purely as a rail maintenance facility by British Rail Maintenance Limited (BRML).

In effect St Rollox was closed in 1988 with the loss of 1,200 jobs.  That said, in the seven years that followed, much of what was the St Rollox site was sold off to developers, and occupied by a Tesco supermarket, Costco, Lidl, and a new Springburn fire station.  The rump of what was left for rail maintenance was sold off after privatisation, in 1995, to a Babcock/Siemens consortium.  In 2007 it was sold on again to Alstom, and finally to Railcare Ltd., which went into administration in July 2013.  The following month, the remaining works was purchased by Knorr-Bremse, who created Knorr-Bremse RailServices (UK) Ltd as a new rolling stock maintenance and repair company.  Five years later it was sold on to Mutares, a German based group specialising in acquiring low income companies, with a view to turning them into growing, and profitable enterprises.

The Mutares acquisition, and operation under the Gemini Rail Group  took pl;ace in late 2018, and by December, the new owner announced it planned to close the Springburn works.

The annoucement was greeted with dismay, and in the early hours of 14th January 2019, the MP Paul Sweeney made this observation:

In 2018, it was sold to another German company, an industrial turnaround specialist called Mutares. In November 2018, just a few weeks after its acquisition, it was formed into a newco known ​as Gemini Rail, which was a wholly owned subsidiary company of Mutares but also associated with Knorr-Bremse—for instance, sharing the same company house number. It is clear this has been an exercise conveniently designed to quickly rationalise their operations in the UK.

As at December 2018, St Rollox continues to carry out component and rolling stock repairs and overhauls. Recent work has included overhauls of class 156s, class 158s and Class 320s for Abellio ScotRail. It is the largest rolling stock repair site in Scotland. Two smaller sites in Kilmarnock are operated by Brodie and Wabtec respectively, and are still operating at capacity.

In December last year, shortly after acquiring the site, the new owner announced very suddenly that it planned to close the works, stating that it was making losses of between £3 million and £4 million.

At the time, St Rollox had barely 200 staff, but they would be the last to work at this famous site, if the closure went ahead.  As a final point in the January 2019 debate, Paul Sweeney made the following point:

The Minister is making a number of pertinent points, but the fundamental crux of this issue is that while it is a private decision for a private company at this point, it is clear that the company, ScotRail and Network Rail could work collaboratively to restructure the site to put it on a sound commercial footing and allow it to win business competitively. This is not about bailing something out or state aid for a failing industry; this is a kernel of expertise and a centre of excellence that could thrive with a restructuring of ownership.

However, despite the perhaps good intentions, and warm words from the Government spokesperson, the closure has gone ahead, and St Rollox is no longer a railway works, be it construction, or maintenance.  The skillsets remain, but it seems the desire to maintain a rail industry has all but evaporated.

-oOo-

Useful Links & Further Reading

  1. An Illustrated History of British Railways’ Workshops; Edgar Larkin; Pub Ian Allan 1998
  2. St Rollox Railway Works: Closure
  3. St Rollox Railway Works closure threatens hundreds of jobs
  4. Save the Caley in Springburn

Long Rails from Austria

Standard

Head caption1

Back in the 1980s, as manufacturing industry – especially the primary industries like steelmaking –was coming to an end in the UK, steel railway rails were still being rolled in England’s North West.   The then BSC Track Products division at Workington in Cumbria was rolling 250ft (76.2 metres) long rails, to UIC standards deemed ‘Normal’, ‘wear resistatnt’ and ‘premium wear resistant’ grades.  The steel rolled into rails at Workington was produced by the Basic Oxygen (BOS) process at Lackenby (Redcar) and Electric Arc furnaces at Sheffield.   

Barrow Steelworks Rail bank

The early days of steel rail production in North West England. Regrettably the source of the image is unknown.

Workington was the rail production centre in the UK, mainly from the 1950s to the 1980s, and prior to that Barrow-in-Furness had been the home of rail production.  Indeed much of the rail output produced at Barrow was shipped around the world, and can be found anywhere from the USA, to Finland and Australia.

The global centre of rail production seems to have shifted to Austria and the heart of Europe these days, with Linz, Graz and Leoben-Donawitz taking the places of Barrow-in-Furness, Redcar and Sheffield.

Schienen__c_voestalpine copy

Where it all starts in 2019 – the Voestalpine plant in Leoben-Donawitz. Photo: Voestalpine

Today (4th July 2019), 108 metres long rails are being carried – by rail – from Leoben-Donawitz, just to the north west of Graz, through Germany and on to Belgium, and via the Channel Tunnel to Dollands Moor, using a DB Cargo Class 66.  The rails are being rolled at the Voestalpine, before being loaded onto a special train – and this is certainly an exceptional load – the train cosnsists of 18 wagons, with each 108-metre steel rail spanning six wagons.

Voestalpine copy

The train as it leaves Leoben-Donawitz in Austria Photo: DB Cargo

DB Cargo are running four such trains across Europe to the UK from Leoben-Donawitz to Aachen West, by DB Cargo Belgium on to Antwerp, by ECR on to Calais-Frethun, before DB Cargo UK pick up the final leg on to Eastleigh.

DB Cargo UK’s International Rail Project Manager Tony Gillan said:

“It’s fair to say that this is indeed an exceptional load. Great care and skill have been required to ensure that our cargo can navigate a safe and smooth passage across the European network to its final destination.”

This impressive train with its 108 metre long rails will  be taken forward on Friday 5th July from Dollands Moor to Eastleigh’s East Yard early on Saturday morning 6th July.

-oOo-