Francis William Webb and His Locomotives

Standard

Francis William Webb was appointed Locomotive Superintendent of the London & North Western Railway (LNWR), in 1871, and for 32 years held that position, until failing health forced him to resign in 1903.  He has been described as an autocratic manager, and during his time, it has been argued that much of his work – especially in the use of compounding – was unnecessary or ineffective operationally.  However, it cannot be denied that he was a man who drove the development of Crewe Works, and established the company at the forefront of railway and engineering technology in the Victoria era.

His engineering knowledge and desire to provide innovative solutions may not always have been a success – either practically, operationally, or commercially – but they took the boundaries of the technology forward.  Whilst he inherited the development of Crewe Works from his predecessor John Ramsbottom, it was Webb that pioneered the use of both Bessemer and Siemens Open Hearth processes to manufacture steel rails.

Webb started his career back in 1851, at the age of 15, as an engineering apprentice, under the tutillage of Francis Trevithick, and later John Ramsbottom – himself a prodigious inventor, designer and locomotive engineer.   By 20, Webb had moved into the Drawing Office, and in March 1859, when he was just 23, FW Webb was appointed Chief Draughtsman.  In 1862, the LNWR was formed by the combination of the Manchester & Birmingham, and Grand Junction Railways, and Webb was promoted and moved to Crewe as Works Manager, as John Ramsbottom was appointed CME of the LNWR.

RPB No 1368 - HMRS Collection

One of Webb’s 3 cylinder compound goods 0-8-0 locomotives at work. Worth noting is the obvious size of the central low-pressure cylinder.
Photograph: Historical Model Railway Society Collection.

Intriguingly, Webb left the railway company in 1866, to join the Bolton Iron Co. – confirming perhaps his expanding engineering interests and knowledge.  The Bolton company was part owned by John Hick, who later became a director of the LNWR.  Less than four years later, and due to John Ramsbottom’s deteriorating health, Webb returned to the railway in 1870, taking over completely in 1871.

It may seem urprising that a Vicar’s son from Tixall could rise to such heights in such a short period, but it must be remembered that railway and locomotive engineering was the ‘new technology’ of the day, and certainly a new industry.  Unliked his brother, Francis Webb showed little interest in a religious career, but showed both an aptitude and great ability in menchanical engineering.

Whilst that ability may not have been enthusisastically lauded by the operational railway engineers on the LNWR, his successful locomotive designs were very successful, and a number lived on into the British Railways era.  Of the 26 different locomotive types delivered under his leadership, only 11 were compounds, the remainder – some 2,563 locomotives, were simple expansion.  The compounds totalled 531, with most built in the 1890s.

Please click on either of the two tables below for a bigger picture ……

FW Webb LOCOS 1

FW Webb LOCOS 2

The descriptions in the PDF file below is an overview of the various classes, which I hope is of interest:

Francis William Webb and His Locomotives

FW Webb COVER

 

Further information ….

 

BR Automatic Train Control System (AWS)

Standard

In 1948, the Railway Executive made a recommendation to the British Transport Commission to adopt, in principle, the application of a system of automatic train control. The term “Automatic Train Control,” although that was its official title, is probably somewhat misleading, since it does convey the idea of total automation and that, as we know today, is something entirely different, The ATC system subsequently adopted on British Railways provided for a visual and audible warning of the position of a distant signal, and where the latter was at caution, if the indication in the locomotive cab was not cancelled by the driver, an automatic brake application was made.

There were prior to 1948, two other ATC/AWS systems already in use, that on the GWR, introduced there in 1912, and a system, similar in many respects to the later BR standard type, installed by the LMSR on the LTS line in 1938. In keeping with the Railway Executive’s principle of standardising combinations of the best practices from other regions, experiments of various kinds were carried out between 1948 and 1952 on potential ATC/ AWS systems. On the face of it, only having two practical systems with which to effect comparisons, the task would seem to have been relatively straightforward. However it appears that a number of technical difficulties arose during this time, and then, if one is to believe the report of the inquiry into the disastrous Harrow & Wealdstone accident of October 1952, there was the question of snow and ice in the north. 1n point of fact it was the cause of this accident which both laid emphasis on the need for, and gave additional impetus to, the development of British Railways Standard ATC system.

BR ATC DiagramBR ATC Maintenance InstructionsThe prototype apparatus was installed during 1952 over the 43 miles between New Barnet and Huntingdon on the Eastern Region main line. The first locomotive to be equipped with the new ATC apparatus was the new Peppercorn Al Pacific no. 60150 Kestrel, which on 17 October 1952 took the 3.10 p.m. from Kings Cross on the first of a series of tests. The testing took some considerable time, for it was not until 1957 that the authorities were entirely happy with the system, and then declared it to be adopted for standard use on all regions of British Railways, the GWR system notwithwithstanding, although much of the latter was replaced by the BR standard system in later years. It has now been fitted to almost all traction units and extended to cover most of the important lines throughout the BR network; the title being altered to Automatic Warning System in order to give a more precise indication of the system’s function.

Operation of the system was based on the use of magnets situated in the permanent way between the running rails, with the tops of the magnets at rail level. The designed purpose of the system was to give the driver audible and visual indication of the position of a distant signal, 200 yards in advance of the signal. The two magnets were placed 2ft 6ins. apart, centre to centre, the one furthest away from the signal being permanent, the nearer being electrically activated when the distant signal was held in the clear position, and dead when at caution. If the indicators were overrun with the signal at caution and the driver had not cancelled the indication, an application of the brake would be made since the apparatus was connected to the automatic brake. There were a total of four indications of the position of a distant signal that could be given to the driver, two visual and two audible. The audible indications were given by a bell or a horn; the former ringing for two seconds on passing over the inductor of a distant signal at clear, and the horn was actuated after a delay of one second on passing over the inductor of a distant signal at caution. The two visual indications were provided by the Driver’s Control Unit (DCU). On passing over the permanent magnet of a signal at caution, the visual display would be changed from yellow and black to all black; then on passing over the electromagnet the horn would be sounded and an automatic brake application made after a delay of three seconds. Re-setting the equipment by the driver would return the display to a yellow and black aspect. If the signal being approached was off, or at clear, the same procedure would take over the perm- anent magnet although, since the electromagnet would in this case be energised, on passing it the DCU display would remain black and a bell would ring for two seconds. In point of fact the DCU would display a black indication until a distant signal set at caution was approached, following which, operation of the re- setting device would change the display to yellow and black.

BR ATC fitted 78036 - Photo 692 copy

BR Standard Class 2MT 2-6-0 in this view, shows the battery box on the running boards, immediately in front of the cab spectacle plate. Photo courtesy: Lens of Sutton

Locomotive Equipment.

The apparatus provided on the track was basically very simple, consisting essentially of the two inductors. Locomotive equipment however amounted to a total of some ten separate items and associated cabling and pipework. Since it was intended for use on steam locomotives, the apparatus had to be specially designed to withstand the extreme conditions to be met with: smoke, steam, heat, vibration, shock etc. The equipment was further designed about two basic parameters:-

  1. From one shopping to the next, all items should function without maintenance from the shed staff.
  2. Should one item fail, it could be replaced without requiring any disturbance to the electrical wiring.

The sensing device, or receiver, was mounted on a stretcher immediately in front of the leading coupled wheels and positioned centrally between the frames at a height above rail level of about 4 Y, and 6 Y, inches. The height of the receiver was not over critical, hence the allowable range of movement of two inches although once fixed no provision was made for adjustment. The receiver was basically a polarised relay, actuated by the track mounted inductors, to transmit electric current to the Relay & Cab Junction Box. This was effected through its own junction box mounted on the frame, to which it was attached through a flexible connection. Flexible connections were provided between the receiver junction box, receiver and relay unit, to allow for any relative movement between the engine frame and receiver. The relay and cab junction box, or relay unit, could be described as the nerve centre of the apparatus, to which all cables from the other items of equipment were connected, its function being to translate the electrical information into audible and visual indications of the signals and where appropriate to initiate the application of the brake. Perhaps the second most important item was the Driver’s Control Unit (DCU) on this unit, the signals being displayed to the driver visually. The unit, mounted in the cab on the driver’s side contained an electro-pneumatically operated solenoid valve, indicator and resetting handle. The solenoid valve, being connected to both electrical and pneumatic circuits and when not activated, under normal conditions ensured that the feed to the horn was maintained at normal air pressure with the brakes off, via the timing and ATC reservoirs. The last key item of equipment on the engine was the ATC Brake Valve, through which the actual automatic application of brake was made. The Brake Valve consisted of a diaphragm acting on a flat disc whose centre was attached to a spindle operating the main brake valve. The valve was normally closed to atmosphere, one side being attached to the train pipe and the other to the Timing Reservoir. Application of the brake was made by admitting air at a controlled rate through the Timing Reservoir, lifting the diaphragm and opening the valve to admit air to the train pipe. A plug on the valve, which would normally be sealed in the open position, could be screwed down to close it in the event of a failure. The remaining items of equipment could probably be classed as ancillary, except perhaps for the ATC Vacuum Reservoir, whose function was to maintain vacuum in the Timing Reservoir and to equalise pressure between train pipe and ATC side of the brake valve.

BR ATC fitted 70033 - Photo 917 copy

BR Standard Class 7MT Britannia Pacific No. 7033 “Charles Dickens” in original guise, with handrails around the smoke deflectors, also shows the battery box on the running boards, immediately in front of the cab spectacle plate. Photo courtesy: Lens of Sutton

On the whole, it is not necessary to describe all the individual items of the Standard AWS apparatus at this stage, since it is the broader principles of the operation of such devices that concerns the majority of us. In retrospect it is interesting to note that much of the equipment, including the specialised electrical devices, was perhaps crude and bulky when compared with equipment of today.

As previously indicated, it was not until 1957 that British Railways decided to adopt as standard the form of AWS described here and eventually extended to cover most important lines on the system. It was intended to fit all traction units with the equipment. Though this has largely been accomplished, quite a number still remain in service unfitted. The GWR’s original electro- mechanical method of AWS has also now succumbed to the standard arrangement, removing the last traces of individuality of that region. Doubtless though it will not be long before the Standard AWS is superseded by a more sophisticated arrangement further to improve signalling and train control.

References.


  1. BR London Midland Region Magazine – November 1952.
  2. BR Automatic Train Control: Maintenance Instructions [BR 31168/2).
  3. BTC Handbook For Steam Locomotive Enginemen.
  4. See also: Kempe’s Engineers’ Yearbook Vol. 1.

 

-oOo-

BR’s 25 Year Locomotive Renewal Plan

Standard

Who would have thought that 33 years ago, the national rail network was planning to provide strategic and phased withdrawal of older motive power, and replacing it with newer, more efficient (operationally and economically) over a 25-year strategy.

The plan was to cover the needs from 1985 to 2009 – what happened?

Potential annual build ratesOne factor may be that 6 years into the plan, the fragmentation and disintegration of rail services began to take place – “privatisation” – which contributed to the continued existence of poor quality passenger and freight services we have today.  Who would have believed that those rail/bus combinations – the “Pacers” – would still be running.

That said, there were successes – on both the passenger and freight motive power fronts, but with a 10-year gap between the last genuine BR type – the 100 Class 60 locomotives, and the imported General Motors Class 66.  These latter were built between 1998 and 2003, and developed from the privately run Foster-Yeoman owned Class 59 diesels, introduced the year that the BR strategy was published.

Of the diesels built since the publication of the programme, only 100 were built in the UK, and the remainder, some 547 locomotives, were supplied from the USA.

By 1991, the East Coast Main Line was completed, with the latest IC225 motive power (Class 91) operating on a fully electrified main line, the Channel Tunnel was being built and BR’s Crewe Works had built the only other electrics to appear – Class 90.

This is what BR said about the new locomotives:

“Over the next 25 years, about 1500 locomotives will have to be built to meet the increasing shortfall between the total demand for locomotives and the residue of the existing fleet

On the basis of currently approved electrification schemes this total includes:

  • About 250 electrics 

  • About 400 passenger diesels 

  • About 850 freight diesels. 


Further main-line electrification after completion of the East Coast route could increase the number of electrics by about 150, with a corresponding reduction in the 
total number of diesels.

”

So, it may be clear from what happened in the late 1980s, and on into the 1990s, there was little or no expansion in locomotive power for main line services. The fixed formation high-speed train sets brought in with the HST/IC125s expanded after the turn of the century, with the all new tilting trains – the “Pendolino”. So the likelihood of high-speed passenger diesels or electrics was a non-starter, and the lack of a co-ordinated strategy nationally during the 1990s, left the private train operators with options to buy/build on a more or less ad-hoc basis.

Passenger locos
Under the wires, only 127 new electric locomotives were built during the years covered by the plan, compared with the 250 possible, although perhaps the “Pendolino” power cars should be included for comparison. These are all still in service today:

BR Electrics

For freight service, equally, little or no long term planning was the likely outcome of a post privatisation service, and the ‘off the shelf’, or at most the modifications of the private builders’ designs was inevitable. As can be seen from the little table showing the current position of freight diesels, nothing was built in the UK, and almost all were North American in origin.   A curious choice perhaps?

Freight dieselsOf the proposed 1,250 or so new diesels, again less than ½ were built, with 647 in service today, despite increases – planned and unplanned – increased demand for freight on rail. These are the current stock:

Current BR Diesels

What would the railway’s motive power have looked like if at least some of BR’s 1985 programme had been implemented?   Would more knowledge and expertise have been retained in the UK rail industry, would they have been more or less successful, in performance, in efficiency and reliability?

Who knows, but perhaps the most obvious missing element of the jigsaw is the lack of strategic planning in the 21st Century, with no planned withdrawals and replacements, just tactical remedies as the creaking infrastructure is upgraded in a piecemeal manner. Yes, passenger growth has been considerable, and perhaps that in itself should have led to the development of a longer term strategy.

-oOo-

 

 

 

 

Engine Number 23468

Standard

This was an 0-6-0 goods locomotive, built by the North British Locomotive Co at its Queens Park Works, in Glasgow in 1926. It was produced about ½ way though order L821, awarded to North British in 1926.

Order L821 consisted of 25 of these locomotives, carrying works numbers 23456 – 23480, and became part of the LMS company’s standard fleet of 0-6-0 goods tender locomotives, when Henry Fowler was that company’s CME. No fewer than 80 of what became the LMS standard 4F goods engine were built by North British, along with numerous ‘Jinty’ tank engines, and of course, the famous ‘Royal Scot’ class locos. The LMS had a strong supplier/partner relationship with North British in the 1920s, and the orders helped to keep the company in business during the traumatic years of the 1920s and 1930s.

The engines were built at Queens Park Works, because the North British Atlas Works had had to be closed, due the country’s dire economic recession. The railway company too was undergoing significant changes at its works, and in particular, at Crewe, where major re-organisation was under way.

In fact, during the early ‘depression’ years of the 1920s, North British’s Queens Park Works built some 201 locomotives for the LMS, including 7 for the Northern Counties Committee and a batch of 25 0-6-0 pannier tanks for the GWR.

This engine was put to work in 1927 for the LMS, carrying running number 4394, and by 1950 had already completed thousands of miles of service, on its intended work, with coal and mixed wagon loads of main line and branch traffics. After nationalisation, she was renumbered 44394, and was rostered at Mansfield shed (16D), then in one of the final allocations was transferred to Stockport Edgeley (9B) by 1964.

Fowler4F_GWSharpe

Sadly not a photo of 44394 – Engine No. 23468 – but a view of one of the later builds from North British in order number L836, begun in 1927. The sister engine shown above is actually Works No. 23669. Photo courtesy: G.W. Sharpe

 

-oOo-

Vulcan Foundry Ltd – 120 Years On

Standard

Yes, I know it actually pre-dates 1898, by almost 70 years, and was there as a driving force of Britain’s industrial revolution, and global industrialisation.  The railway workshops and foundries had been established some years earlier, in 1830, by Charles Tayleur of Liverpool, who was joined in 1832 by Robert Stephenson.  As Tayleur & Stephenson, working from the foundry at Newton-le-Willows, almost alongside the Liverpool to Manchester Railway.

 

 

0-4-0 Tayleur

The first steam locomotive to be built at the Vulcan Foundry, and intended for use on the North Union Railway.

Indian Railways 4-4-0 at Liverpool

An early Vulcan product destined for India – a 4-4-0 being loaded aboard ship at Liverpool (Photo: RPB Collection)

In 1847 the name was changed to the Vulcan Foundry Company, but Robert Stephenson had left, and Tayleur appointed another famous engineer – Henry Dubs – as Works Manager.  Charles Tayleur had also acquired a new partner, George Samuel Sanderson, and with Charles and Edward Tayleur they opened the Bank Quay Foundry, a stone’s throw from what is now one of Warrington’s railway stations.

The Bank Quay Foundry was equally as notable as the Vulcan works, and was responsible for building the world’s first iron tea clipper – the “Tayleur”, together with hydraulic presses used to construct the Stephenson designed ‘Britannia Tubular Bridge’.  As a separate undertaking, the Warrington foundry closed only 7 years later in 1854.

Vulcan Foundry family tree

The ‘organogram’ included in the GEC Diesels short publication describing the story of the Vulcan works at Newton-le-Willows

This world famous company was formally established as Vulcan Foundry Ltd in 1898, based at Newton-le-Willows, almost alongside the Liverpool to Manchester Railway, and within a short distance of  the principal Anglo-Scottish main railway line.  The diagram above shows some of the key connections between Vulcan, its acquistion – almost 60 years later – by English Electric of Preston, and on to form part of the GEC Traction empire.

 

By the time Vulcan Foundry Ltd was formed in 1898, the company had already built over 1500 steam locomotives, beginning with a pair of 0-4-0s (No.1 Tayleur, and No.2 Stephenson) for the North Union Railway, and a Mr Hargreaves.  The first locos built in 1898 were for the East Indian Railway – 16 x 0-6-0 types.  The same year saw another 4 orders for India, 1 for Uganda and 1 for Ireland.

 

From 1898 to the outbreak of the First World War Vulcan had supplied the same number of steam engines, as it had in its first 60 years of existence, clearly demonstrating the huge growth in both railways and locomotive building.  During hostilities – in both First and Second World Wars, Vulcans supplied military hardware, including tanks and munitions, demonstrating the ability and capability of its workforce.

Vulcan Foundry Advert - 1952 Rly Gazette

A typical advertisement for Vulcan Foundry from the 1958 edition of the “Directory of Railway Officials & Year Book”

The inter-war era – the 1920s and 1930s depression – saw a reversal of the country’s manufacturing growth, job losses and near commercial failure.  This was repeated with Vulcan’s competitor’s, such as the giant North British Loco. Co., although orders from the British Colonies – especially India – continued to be won.  This together with its early foray into non-steam traction, with A/S Frichs of Denmark, and a partnership with English Electric for diesel traction kept the company going.

That partnership with English Electric proved a major success and from 1945 onwards, the company’s construction of non-steam types continued to grow.  This was especially encouraged by the BR “Moderinsation & Re-Equipment Programme” of the 1950s, and the UK’s first 2000hp diesel type was built at Newton-le-Willows in 1958.

Vulcan Foundry - "wheeling" a Class 40

“Wheeling” an English Electric Type 4 (BR Class 40) at Vulcan Foundry, and slightly hidden to the right is one of the electric locos built for South African Railways during the 1950s.

At that time of course, Vulcan Foundry was becoming part of the EE Co. empire, and having been in at the start of the railway revolution and steam traction, it was also building ‘firsts’ towards the end of its independent existence.  The company’s last order was for a 500hp diesel shunter for ICI’s Northwich Works in Cheshire in 1980 – a long way from some of the most powerful  steam, diesel and electric locomotives that emerged from the Newton-le-Willows works and desptached around the world.

By 1980, the Vulcan works had been in the railway engineering business for 148 years – not a bad record!

Well Worth a watch:

These two films were made in 1954, and show the work in all areas of the Vulcan works at Newton-le-Willows – this was typical not just of Vulcan Foundry, but of the heavy engineering industry in Britain at that time.  Sadly all gone now.

 Vulcan ad logo

Vulcan Foundry 1954 (Part 1)

Vulcan Foundry 1954 (Part 2)

Useful Links:

Newton Heritage – Vulcan Foundry

 

 

Watch this space for more Vulcan info to come …..

-oOo-

 

 

 

Compound Steam on The Pampas

Standard

In 1948 the railways of Britain were nationalised – and so were the railways in Argentina.  Ours under Clement Atlee, theirs under Juan Peron, but the similarity and connections don’t end there, because many of Argentina’s railways were constructed, operated and owned by British businessmen.  The early railway engineers included men like Robert Stephenson, whilst Argentina was also home to numerous civil engineers, and 78% of the country’s rail network was effectively British owned by 1900.

According to a publication by the Institute of Civil Engineers:

“Large scale railway development in Argentina was marked by the commencement of the construction of the Central Argentine Railway initially from Rosario to Cordova.”

“While the American Wheelwright was the key to the negotiations it was the experience and capital of the contractors, Thomas Brassey, Alexander Ogilvie and George Wythes that gave the project credibility.”

Of course, Britain’s steam loco builders were always going to provide the lion’s share of motive power, and other equipment, with such extensive business investment in Latin America.

North British Order L182

North British Loco Co. built 12 of these 2-cylinder compound 4-6-0s, designated “Class 12A”, they were built at the company’s Atlas Works in Glasgow. They were built to order L182 in 1906, and carried works numbers 17436-47.    Photo Courtesy: ©CSG CIC Glasgow Museums and Libraries Collection: The Mitchell Library, Special Collections

There were in fact a total of eight British owned railways that became vested in the Argentine State Railways by 1948. Four of these were broad, 5ft 6ins gauge, two standard gauge, and two metre gauge.  The largest of the former British owned railways was the Buenos Aires Great Southern, and most of its locomotives were supplied by Beyer Peacock, Vulcan Foundry, North British, Robert Stephenson & Co., Nasmyth Wilson, Hawthorrn Leslie, and Kitson. There was some ‘foreign’ success too in winning order from the BAGS, including, J. A. Maffei, and even Baldwin.

BAGS Class 12 4-6-0 copy2

Buenos Aires Great Southern Railway – BAGS Class 12 4-6-0 2-cylinder compound locomotive, built by Beyer Peacock in Manchester Gorton, the type was used extensively on passenger and mixed traffic duties.     Photo Courtesy: Historical Railway Images

However, it was Beyer Peacock, Vulcan Foundry, and North British Loco Co that supplied the many hundreds of steam types for Argentina, and these covered each of the different gauges, from the 5ft 6ins, broad gauge, to 4ft 8 1/2ins standard gauge, metre and even narrow gauge types.  They included both simple and compiund expansion types, rigid frame and articulated designs.

The compound locomotive was extensively employed on these railways, and the ‘fashion’ for lasted longer in the southern hemisphere than the north, with many variations in design and operation.

The offering below covers this period, with a focus on the broad gauge Buenos Aires Great Southern Railway lines, where both two and four cylinder compounds were put to work.  Some details too of other railways, and the considerable numbers of locomotives supplied by the North British Co. from its works in Glasgow is outlined.

Compound Steam

Useful Links:

VF Logo

Historical Rly Images logo

sud3941_small

Buenos Aires Great Southern Railway  Class 12k 4-6-2 steam locomotive Nr. 3941 – taken at Vulcan Foundry in 1926    Photo Courtesy: Graeme Pilkington

-oOo-

Electro-Diesels are Back

Standard

No – I know this is not the same!  But any opportunity to highlight the centenary of the formation of the UK’s own English Electric Co. seems OK.

The new Hitachi built Bi-Mode trains for Trans Pennine Express are a lot more sophisticated than the English Electric built electro-diesels for BR’s Southern Region in the 1960s, but the principle is the same – isn’t it?  Taking power from an external electrified contact system and having on-board diesel engines when on non-electrified lines.

Here’s what we had in BR days:

In November 1964, an item appeared in the “Locomotive Journal” from ASLE&F, and in describing the Bournemouth Electrification project, this little snippet appeared:

ASLEF Journal Extract 1964

Preston’s English Electric Co. had received an order for 43 of these locomotives, which was in essence part of the plan to elimiate steam traction, as well as following the Bournemouth electrification scheme.

They were numbered E6007-49 by BR, and designated Type JB to distinguish them from the six prototype Type JA locomotives, Nos. E600l-6, which later became class 71.  The new English Electric/Vulcan Foundry built locos became classes 73/1 and 73/2.  English Electric had supplied the power equipment for the six Type JA, BR built locos, which were constructed at Eastleigh Works, and entered service between February and December 1962.

The next batch, Type JB, were built at English Electric Co’s works at Newton-Le-Willows – originally the Vulcan Foundry – and delivered between October 1965 and January 1967.  The diesel engines were also manufactured at Vulcan Foundry, with the electrical equipment produced at the Preston works.

Class 73:2 Electro-Diesel

EE Class 73:2 No 6021

Class 73/2 No. E6021, and one of the few that never carried a name, on a typical transfer freight duty.      Photo: RPB Collection

Here’s what Hitachi have delivered:

The first of the “Nova 1” (class 802) trains arrived at Southampton on the 11th June 2018, and was successfully tested between Darlington and Doncaster in a 5-car set this month (July).  Further testing is planned for the TPE route in the North of England and Scotland over the coming months.  Also appearing in July 2018 are the new Hitachi Class 385 trains for the Glasgow Queen Street-Edinburgh Waverley route via Falkirk High. More class 385 trains  will be phased in over the coming months, before being extended to other routes across the Central Belt.

The new Class 802s for TPE are essentially closely similar to the same type delivered by Hitachi to Great Western, and for TPE are fitted with MTU/Rolls-Royce Series 1600 MTU PowerPacks.  The core of the PowerPack is the MTU 12V 1600 R80L, a 12-cylinder diesel engine, with low consumption/emissions, and meets the EU Stage IIIB emission legislation.

The trains, ordered as 19 x 5-car sets will be able to run in either five or ten carriage formation, capable of speeds of up to 140mph in electric mode and 125 mph using diesel engines.

Hitachi Class 802 at Doncaster Depot

Hitachi Class 802 for Transpennine Express at Hitachi’s Doncaster depot.

Further reading:

Transpennine Express “Nova 1” Begins Tests

Hitachi Class 385 Electrics

One issue that has not been addressed for the UK so far as the bi-mode trains are concerned, is whether this is a stop-gap solution pending the restart of electrification projects across the Pennines.

Nevertheless the new rolling stock looks like a welcome improvement.   This is a long way from the designs and requirements for rail operations in the 1960s, with fixed formation train sets – multiple units – and certainly more aerodynamic styling.

Let’s hope they can also be used on Northern Rail territory and lines in North West England.

-oOo-