Coal Dust Powered Steam Engines

Standard

In 1919, ‘The Engineer’ carried a short reference in its January 13th issue to experiments in using ‘coal dust’ in locomotive fireboxes, describing them as powdered fuel engines:

Of the Great Central powdered fuel engine we can at the moment say no mote than that we hope before long to place a complete description before our readers. We dealt in our issues of Aug. 23rd and 30th, with the device employed on American locomotives for coal-dust burning, and we may note now that, whilst the general principles followed by Mr. Robinson are naturally not very different, the arrangement of the parts has been worked out afresh. The Great Central experiments are being watched with interest, and in view of the present desire to economise fuel, and the now proved fact that coal-dust can be used satisfactorily in locomotive fire-box, we shall not be surprised to see other engineers following Mr Robinson’s lead.

Original entry:

GCR coal-dust extract

To be honest, I’d not considered the idea of pulverised fuel as a source for steam locomotives before, considering the availability of considerable quantities of black coal from mines in the UK. There were perhaps other countries where good steam coal was not so readily available – the USA, Italy, Germany, and Australia – at least in some areas can be considered in that category. Aside from the efficiency, the complexity or otherwise, of burning, handling and distributing pulverised fuel, the economic conditions might well have a part to play in its use.

EPSON scanner image

The GCR’s experiment with coal-dust firing started with this heavy freight design, seen here in later years in LNER days.  This Sunday line-up of heavy freight locomotives is seen at Whitemoor Depot, March cc-by-sa/2.0 – © Ben Brooksbank – geograph.org.uk/p/2333255

Take the Great Central example above, that was in the immediate post First World War era, so along with compounding, it was seen as a way of improving the efficiency of motive power through the use of a wider range of fuels. Primarily though, a combination of increased fuel cost and poorer quality coal led to J.G. Robinson’s experiments in using coal-dust, or pulverised fuel. In addition to economics, there was a belief that this would increase the level of combustion, and hence operating performance and efficiency.

The first trials took place with four 8K Class 2-8-0 freight locomotives (later Class O5 in LNER days), between 1917 and 1924. The 2-8-0s were fitted with a bogie tender, housing a container holding the coal-dust, which was then fed to the locomotive’s grate, through pipes. The conventional fire grate and ash pan had been replaced by firebricks, and the fuel blown into the front of the firebox, using a system of fans, driven initially by a petrol engine, and later by a small steam turbine. The coal-dust used in these trials was recovered from colliery screens, and then dried before use on the locomotive, where it was mixed with air for combustion. Amongst the downsides to the use of this arrangement was getting the air to coal-dust mixture right, and the design and layout of the firebox, and even mixing the coal dust with oil (colloidal fuel) proved equally problematic.

The following is an extract from a book entitled “Brown Coal”, published by Australia’s Victoria State Electricity Commission in 1952 gives some insight into Robinson’s experiments on the Great Central.

“The Great Central Railway Company had fitted two locomotives for burning, respectively, pulverised black coal and colloidal fuel, the latter a mixture of about 60 parts of pulverised coal and 40 parts of oil. The pulverised fuel locomotive was in regular service on one of the heaviest runs in England, between Gorton near Manchester and Dunford, a distance of nearly 18 miles; it had to take, its place with a 500-ton load among similar trains; half a dozen of these were following trains, all of which were likely to be held up if the pulverised fuel locomotive failed. All this indicated the confidence of the Railways officials in the reliability of the pulverised fuel locomotive under everyday working conditions. During August 1921 the author had a run on the footplate of the pulverised fuel locomotive on a day when the general traffic conditions were as described above. Running, tests had bees made previously with the two converted locomotives and with another using lump coal; for maintenance of steam pressure and rate of travel on the heaviest portions of the run, colloidal fuel showed best and pulverised coal next best. Two separate engines on the tender, which was specially built for this service, drove the feed screw for the coal and the blower fan. Technically these experiments appear to have been quite successful, but the official view of the company was that there would be no commercial gain in pulverising its high-grade black coal.”

These experiments with alternative fuels were not uncommon on a number of railways in the early years of the 20th Century, as William Holden’s oil-fired examples on the Great Eastern Railway testify. However, in the UK at least, the likelihood of more ‘coal-dust fired’ locomotives was unlikely to grow, and indeed it did not, and remains a curiosity.

It wasn’t just the Great Central that was experimenting with pulverised, the Southern Railway carried out some work in the 1920s, based on those developments in the USA. In 1916, The New York Central converted a 4-6-2 to burn pulverised coal, and although not leading to great numbers of similarly fuelled steam types, these experiments were important in looking in detail at the performance, and efficiency of a steam locomotive over a wider range of fuel types. Brown coal and lignites were relatively common in European countries, such as Italy and Germany, where perhaps they were more fully developed.

In Germany, six of the Prussian “G12” Class 2-10-0swere converted to ‘coal-dust burning’ in 1930, but because of the considerable deposits of lignite/brown coal, a much softer coal with a high water content, new ‘coal-dust burning’ locomotives were being built in the 1950s. In the former East Germany, the state railway Deutches Reichsbahn (DR), constructed a pair of 2-8-0s in 1954/5 – the DR Class 25.10. The second of these was designed and fitted for coal-dust firing, and intended for both heavy passenger and goods workings.

Dampflokomotive 58 1894, BR 58

The first coal dust locomotive for Deutsche Reichsbahn (DRG), the former East Germany, with fuel from lignite. The performance was claimed to be significantly higher than a conventionally fired locomotive. The image shows the machine with tender and bunker. Bild 102-11602 / CC-BY-SA 3.0, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=5415387

The initiative started in the early 1920s in Germany, when the state railway organisation brought together the loco builders and the coal industry, and established a business to conduct research on the use of pulverised fuel for firing steam locomotives. This organisation – SLUG (Studiengesellschaft) – introduced the ‘Stug’ system, working with Henschel & Sohn, and at the same time a parallel development was being trialled by AEG. In both cases, the initial work was for stationary boilers. In later years, the system used in East Germany, was ascribed to the GDR’s Hans Wendler, and unsurprisingly known as the Wendler coal-dust firing system, which is the system used on the later DRG 2-10-0s.

Kohlenstaublok 25 1001 (BR 25)

One of the 20 Class 44 2-10-0 locomotives converted to coaldust firing in the 1950s, for work on lines in the Thuringian Forest region. Several of the class have been preserved, but sadly perhaps none of this particular variant.

During the 1950s, coal-dust fired steam locomotives continued to work in Germany, and in East Germany, the DRG converted 20 of the Class 44 2-10-0 heavy freight locomotives, of which almost 2,000 had been built since the 1920s. The system was ultimately replaced – largely due to the complexity of the fuelling system needed – by oil-fired locomotives, which were still in use in Germany in the mid to late 1970s, up until the end of steam traction.

The Southern Railway had built a new class of 2-6-0 locomotives, under its then CME, Richard Maunsell, for passenger duties, with two outside cylinders, weighing in at 110 tons, and developing some 23,000lbs of tractive effort. These new “U” Class moguls included number A629, built in 1928, and fitted with the German design of pulverized fuel system, supplied by AEG. The idea, unsurprisingly, given this was taking place during the great depression of the 1920s and 1930s, was to improve the operating efficiency of the steam engine. The trials took place on the London to Brighton line, and were used as a means of deciding whether it was more economical to convert to the poorer grade of fuels for steam traction, or implement widespread electrification. It was a short lived experiment, and brought to an end following a minor explosion that occurred when the coal dust came into contact with the hot sparks being ejected through the chimney. It was subsequently found that the blast of the steam engine in normal operation was drawing more coal dust/pulverised fuel through the boiler, without being burned.

31629

The experimental “U Class” 2-6-0 in later BR days as No. 31269

The locomotive itself was returned to normal coal burning in 1935, and renumbered 1629, and survived to BR days, and finally withdrawn from service in 1964, as BR No. 31629, and of course the Southern Railway embarked on major electrification schemes.

Another intriguing attempt at using ‘cheaper’ fuel, was to mix the coal dust/pulverised fuel with oil, and described as “colloidal fuel” in some quarters. In fact this too wasn’t a new idea, and had been used in ships during the First World War, when fuel supplies were becoming low. The idea seems to have been useful only where the mixture of oil and pulverised coal could be injected into boiler furnaces through an atomising burner, and the complexities of using such an arrangement on a steam locomotive footplate can only be imagined. Well on Britain’s railways in the 1920s and 1930s perhaps, since normal bituminous coal was readily available.

Curiously, the idea was raised again towards the end of the Second World War, in the UK’s parliament, when this observation was made in Hansard:

Locomotive Fuel - Pulverised Coal

But, in the end, even the UK’s experiments with oil-firing steam traction was not a success, and the increased march and takeover by diesel and electric traction was the death knell for this idea. But, elsewhere, trials and developments continued, including ‘down under’.

Australia – too little too late? As mentioned earlier, a study carried out on behalf of the State Electricity Authority of Victoria looked in great depths at the use of brown coal/lignites for boilers, and including steam locomotives. The work began in the immediate Post Second World War period, and was driven by industrial action on the New South Wales coalfields, and dwindling supplies of hard, black coal, and the coalfields in Victoria were exhausted. To combat this, for the railways, a large number of locomotives were converted to oil-firing, and the experiments with pulverised brown coal began by fitting the 2-8-2 freight locomotive X32 with the necessary ‘Stug’ equipment from Germany.

X32_dynamometer_car

X32, after conversion to PBC firing, on a test train with the VR and South Australian Railways joint stock Dynamometer car. Note plume of steam from the turbine motor on the tender, which drove a conveyor screw and blower to force coal dust into the firebox.          By Victorian Railways photograph – State Library of Victoria, Public Domain, https://commons.wikimedia.org/w/index.php?curid=23956450

This experiment was a success, and in 1951, the remaining 28 members of the class were converted to coal-dust, or pulverised fuel firing, and even one of the prestigious ‘R Class’ 4-6-4 passenger types – No. R707 was converted. The “R Class” was built by the North British Locomotive Co. in Glasgow, and worked some of Victoria’s prestige, express passenger services.

Whilst the experiments – and indeed operational running with the “X Class” and R707 was a success, time was not on the side of this technology, since dieselisation of Victoria’s rail system was rapidly gaining ground, and in 1957, the decision to abandon ‘coal-dust fired’ steam locomotives was taken. R707 was returned to normal lump coal as fuel, and was rescued and fully restored to operations as a preserved example of a fine class of steam locomotive.

58_1261-5_1 copy

The last of a pair of the ex-Prussian Railways design of 2-10-0 that were rescued for preservation. 25.281 is seen here at Potsdam in 1993.         By MPW57 – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3726331

 

-oOo-

Useful Links:

Passenger Growth – An Inconvenient Number?

Standard

Today in the UK, the number of rail passengers – we are repeatedly told – is at the highest its ever been, and there has been rapid expansion over recent years. As an arch-sceptic on statistics, I wonder what ‘truth’ lies behind these reports.   In the area where I live, the volume of cars on the local roads is much more today than say 30 years ago – and yet the local economy has declined, with fewer industries. Many of the cars on the roads have only a single occupant, where do they go where do they work – has the ‘school run’ replaced the trip to work at the factories that have either closed, or been reduced in size.

Passenger numbers have indeed increased – in some examples quite dramatically. The statistics record passenger kilometres travelled, and comparing both the rates of increase over the past 10 to 15 years with our European neighbours shows some interesting contrasts. It may be that the number of passenger kilometres would increase because there are many more commuter – short distance journeys – not that passengers are travelling further.
The UK still has a long way to go before it catches up with France and Germany – each of which have commuter journeys in and around major cities – but since around 2010/11, it has grown at an increased rate. Comparing the numbers from 2017, the UK has seen passenger-kilometres rise by 13% over 2012, and by 37% since 2007.   For France these same figures are 6% and 18%, whilst in Germany these numbers are 2% since 2012 and 21% since 2007.

Passenger km ChartThat said, the annual rate of increase in the UK has declined in recent years, between 2014 and 2017 the rate has fallen from 4% to 1%. Is it because of the slower infrastructure and rolling stock investment rates, or higher ticket prices per kilometre than in two of our neighbours?

Annual % Increase
It is a complex picture in the UK, but it is clearly true that passenger numbers and certainly the distances travelled have increased significantly – which does perhaps underpin a lot of the reports and experiences of overcrowding on many services. There is though marked regional variations across Network Rail’s infrastructure, and the development of a strategy to improve transport in the North of England especially is clearly essential. Currently, the only movement in that direction in the past couple of years has been the Northern Powerhouse and Transport for the North – but in 2019, this connects across the M62 road corridor, and North East cities such as Leeds, York and Newcastle.   HS2 and HS3 are still essentially at the drawing board stage, and for rail passengers, the lack of progress there may be a reason for the fall off in passenger growth since 2014.

Yes, I know, statistics can be used to explain a variety of pros and cons in advancing the cause of rail transport and investment, but I had wondered for some time why, in an area I am familiar with, there seems to be more cars, lorries and vans on the road and industry and population has fallen.

-oOo-

Useful Links:

Northern-powerhouse-rail

Eurostat Passenger Km

ORR UK Rail Statistics

2-Stroke Diesel Engines on BR

Standard

Back in the 1950s, when British Railways was beginning work on the “Modernisation & Re-Equipment Programme” – effectively the changeover from steam to diesel and electric traction – the focus in the diesel world was mainly between high and medium speed engines.

On top of which, there was a practical argument to support hydraulic versus electric transmission technology – for main line use, mechanical transmission was never a serious contender.

Lens of Sutton - LMS 10000The first main line diesels had appeared in the very last days before nationalisation, and the choice of prime mover was shaped to a great extent by the experience of private industry, and English Electric in particular. The railway workshops had little or no experience in the field, and the better known steam locomotive builders had had some less than successful attempts to offer examples of the new diesel locomotives.

In Britain, the changeover from steam to electric traction became a very hit and miss affair during the 1950s and 1960s.  Orders for the rail industry, and especially the locomotive industries, was subordinate to the railway workshops – which in the ‘experimental’ years received the lion’s share of the work.  That said, the supply chain included companies like English Electric and Metropolitan Vickers, who had had considerable experience in non-steam traction, especially in export orders.

GEC TRaction Photo SP 8671Examples operated in British Railways experimental period between 1948 and 1956 was powered by ‘heavy oil engines’ – the use of the word ‘diesel’ seemed to be frowned on by the professional press in some quarters.  The few main line types that had been built were based around medium speed, 4-stroke power units, with complex valve gear, and perhaps over-engineered mechanical components.  Power to weight ratios were poor.

In the USA in particular, where fuel oil and lubricating oil costs were much less of a challenge for the railroads, 2-stroke diesel engines were common, with much higher power to weight ratios, but equally higher fuel costs.  Indeed, the Fairbaks-Morse company had designed and built opposed piston engines, long before English Electric’s ‘Deltic’ prototype appeared.

Napier_deltic_animation_large

A fascinating glimpse into the workings of the 2-stroke ‘Deltic’ engines. In this animation, the source of the power unit’s name as an inverted Greek letter ‘Delta’ is perhaps more obvious.

Eventually, BR produced its modernisation plan, and included numerous diesel types, for operation and haulage of the very different services in all regions of the UK – they were dominated by medium speed 4-strokes, and only two examples of the 2-stroke design.  The two examples were at opposite ends of the league – both in terms of operational success – and perhaps in the application of the 2-stroke to rail traction.

Intermodel locoThey remained the only two examples in main line use until the 1980s/1990s, when as a result of privatisation of rail services, many more 2-stroke powered examples were ordered and delivered from the major manufacturers in the USA.  It may be though, that this technology will see only a brief life, as further electrification, and other technology changes take place.

This is just a brief overview of some aspects; please click on the image below for a few more thoughts:

2-Stroke Diesels Cover

Useful links:

M-V Article cover page

 

AQ5R3193

-oOo-

Standard Wagon and the SDT

Standard

Heywood is a small town within the Greater Manchester region, and according to most recorded sources was home to railway wagon building since 1863, which is curious, since Companies House only have a record of the company’s formation in 1933. It may be that this was due to a simple change in the company’s status to become a ‘limited’ company, but if anyone out there can offer some additional advice I would be grateful.

Heading picBack in 1988 – yes, 30 years ago, the then Standard Railway Wagon Co., built and delivered an innovative Self Discharging Train (SDT), for transporting and delivering aggregates from quarries to lineside locations.  The company remained successful in the 1980s, and the following year, it’s share capital had been increased and stood at £1,402 million, so despite the lack of investment in rail, for these wagon builders their approach looked confident.

The driver for this particular wagon design, and maybe the company’s confidence, was the Department of Transport’s identified need to build 650 new by-passes under its road building programme, which of course attracted the attention of aggregate suppliers.

Side tipping wagonCarrying bulk aggregates over long distance by road to a target site would obviously be expensive, both financially and environmentally, so why not bulk haulage to a nearby railhead? At the time, aggregates would typically be discharged from conventional hopper wagons into stockpiles, like a merry-go-round coal train – by way of undertrack structures, from which the aggregate would then be loaded onto lorries. Clearly, with the government’s road building plans going ahead, construction of several hundred temporary discharge points for stockpiles at the railheads was out of the question.

SDT Train showing discharge wagonThe answer, so far as Standard Wagon was concerned, and in partnership with Redland Aggregates, was of course the self-discharge train. The idea was a train of hopper wagons, using a built-in conveyor built to discharge the stone. Simple enough you might think. The wagons were grouped in sets of 5 or 10, with the conveyor belt running underneath and between all wagons, and at the end of each group, the system allowed the transfer of stone to another group of wagons, or onto a transfer / unloading wagon. The fixed section of wagons were connected to one another using British Rail’s standard Freightliner coupling gear, whilst the hopper wagons, designated type PHA were mounted on GFA pedestal axles, built by Gloucester Carriage & Wagon. The unloading wagon was fitted with a boom, mounted on a turntable, which could be rotated to discharge the stone to either side of the wagon, either onto a lineside stockpile, or even into a lorry.

SDT SpecStandard Wagon received an initial order for four 10-wagon sets, each having 8 wagons sandwiched between the two boom transfer wagons, one of which carried a 65hp diesel engine, and the other a belt tensioning device. The boom transfer cars were fitted with an adjustable swinging arm boom and conveyor, and stated to be capable of delivering 1,500 tonnes of aggregate from Redland’s quarry at Mountsorrel. When travelling to or from a site – quarry or lineside location – this rotating boom was supported on a steel frame on the outer wagons, and locked in position.

Initially they were formed into trains of 20 hoppers, and first entered service in April 1988. In the same year, a second order for five SDT trains, but connected as 8 wagon sets, and these went into service in 1989. Standard Wagon claimed that trains of almost any length could be formed with this system, given the modular nature of the design and build.

The idea had been developed in the USA, but on shorter trains than normally used in the UK. An early prototype was built at Heywood in 1982, to develop the concept using a standard ‘PGA’ hopper wagon, with a conveyor belt fitted beneath its twin hoppers, and discharge its contents over and above the solebars to either side of the vehicle. Sadly it was not a great success, but further work was carried out, and the SDT train was born six years later using and developing this principle.

First SDT at Heywood

SDT load transferAt the time of its introduction, the SDT was claimed to be achieving all it was designed for, after loading at conventional batch loading points, the 1,500 tonnes payload could be deposited at the trackside. The company also suggested the load could be delivered over a hedge into a field – certainly avoiding the need for costly offload site preparation or planning permission. The booms at either end allowed material to be offloaded, according to the manufacturer at a rate of 1,000 tonnes per hour, but it was this ‘rotating boom’ that was at the centre of one of the most serious accidents in which the SDT was involved.

In February 2016, an accident occurred at Barrow-upon-Soar, when an East Midlands Train – the 10:20 Leicester to York service – a Class 222 set, number 222005 collided with the discharge boom of the SDT, which was stationary in a siding next to the main line. A fault caused the boom to be rotated out over the main line, and it struck two cars of the train, which was travelling 102 mph (163 km/h), but thankfully it was not derailed. Sadly a fitter who had been working on the boom wagon was badly injured, although no one on the passing train was injured.

The RAIB (Rail Accident Investigation Board) made a number of recommendations, including for improvements needed to the SDT’s owners, operators and maintainers methods of assessing risks and hazards. The maintenance company, Wabtec, were required to improve their management processes, and the then owners, Tarmac, were required to improve processes for determining when to instigate interim safety measures, as wagon conditions deteriorated.

An SDT had suffered another accident some 9 years before, in June 2007, when the type PHA hopper wagons used in the SDT were involved in a serious derailment at Ely, in Cambridgeshire. This train was en route from Mountsorrel to Chelmsford, and consisted of three ten-wagon sets and one five-wagon set 
but derailed causing substantial damage to a bridge over the River Ouse. Thankfully no injuries resulted from the derailment, but both the section of line and part of the River Ouse were closed for 6 months.

Standard Wagon of Heywood was registered in November 1933, and 70 years later, following acquisition and integration with Cardiff based Powell Duffryn in 1989, the company had effectively ceased trading. Powell Duffryn itself, a general engineering business and ports operator, was sold to a venture capitalist in 2000. Currently, it is listed as a non-trading company, based in Bracknell, Berkshire, but classed as a builder of locomotives and rail vehicles.

Standard Wagon logo

Standard Wagon WorksOnce acquired by Powell Duffryn, they continued in the manufacture and repair of goods wagons, and bogies, but barely 2 years later in 1991/92, things had started to deteriorate, with orders drying up, and as Standard Wagon, the company made a loss of almost £1 ¼ million in 1992. The company still had its innovative wagon design, and was clearly hoping to sell the product to a wider customer base, than just Redland Aggregates, but the losses continued and all wagon-building operations ceased in 1993/94.

Today, as part of French construction materials company Lafarge, three SDT trains are still in use in the UK, each of course based at the Mountsorrel Quarry. A fascinating experiment with innovative ideas for the loading and unloading of aggregates in bulk, but one which, despite massive investment in road building in the UK has not been an outstanding success. At least the engineers, designers and wagon builders at Standard Wagon in Heywood can take some comfort for the fact that their innovation is still in operation today.

Further reading:

 

-oOo-

 

Compound Steam on The Pampas

Standard

In 1948 the railways of Britain were nationalised – and so were the railways in Argentina.  Ours under Clement Atlee, theirs under Juan Peron, but the similarity and connections don’t end there, because many of Argentina’s railways were constructed, operated and owned by British businessmen.  The early railway engineers included men like Robert Stephenson, whilst Argentina was also home to numerous civil engineers, and 78% of the country’s rail network was effectively British owned by 1900.

According to a publication by the Institute of Civil Engineers:

“Large scale railway development in Argentina was marked by the commencement of the construction of the Central Argentine Railway initially from Rosario to Cordova.”

“While the American Wheelwright was the key to the negotiations it was the experience and capital of the contractors, Thomas Brassey, Alexander Ogilvie and George Wythes that gave the project credibility.”

Of course, Britain’s steam loco builders were always going to provide the lion’s share of motive power, and other equipment, with such extensive business investment in Latin America.

North British Order L182

North British Loco Co. built 12 of these 2-cylinder compound 4-6-0s, designated “Class 12A”, they were built at the company’s Atlas Works in Glasgow. They were built to order L182 in 1906, and carried works numbers 17436-47.    Photo Courtesy: ©CSG CIC Glasgow Museums and Libraries Collection: The Mitchell Library, Special Collections

There were in fact a total of eight British owned railways that became vested in the Argentine State Railways by 1948. Four of these were broad, 5ft 6ins gauge, two standard gauge, and two metre gauge.  The largest of the former British owned railways was the Buenos Aires Great Southern, and most of its locomotives were supplied by Beyer Peacock, Vulcan Foundry, North British, Robert Stephenson & Co., Nasmyth Wilson, Hawthorrn Leslie, and Kitson. There was some ‘foreign’ success too in winning order from the BAGS, including, J. A. Maffei, and even Baldwin.

BAGS Class 12 4-6-0 copy2

Buenos Aires Great Southern Railway – BAGS Class 12 4-6-0 2-cylinder compound locomotive, built by Beyer Peacock in Manchester Gorton, the type was used extensively on passenger and mixed traffic duties.     Photo Courtesy: Historical Railway Images

However, it was Beyer Peacock, Vulcan Foundry, and North British Loco Co that supplied the many hundreds of steam types for Argentina, and these covered each of the different gauges, from the 5ft 6ins, broad gauge, to 4ft 8 1/2ins standard gauge, metre and even narrow gauge types.  They included both simple and compiund expansion types, rigid frame and articulated designs.

The compound locomotive was extensively employed on these railways, and the ‘fashion’ for lasted longer in the southern hemisphere than the north, with many variations in design and operation.

The offering below covers this period, with a focus on the broad gauge Buenos Aires Great Southern Railway lines, where both two and four cylinder compounds were put to work.  Some details too of other railways, and the considerable numbers of locomotives supplied by the North British Co. from its works in Glasgow is outlined.

Compound Steam

Useful Links:

VF Logo

Historical Rly Images logo

sud3941_small

Buenos Aires Great Southern Railway  Class 12k 4-6-2 steam locomotive Nr. 3941 – taken at Vulcan Foundry in 1926    Photo Courtesy: Graeme Pilkington

-oOo-