From Barrow-in-Furness to Alice Springs

Standard

There is a famous rail route that runs over 1,800 miles from Adelaide / Port Augusta in South Australia to Darwin in the Northern Territory by way of the equally world-renowned town of Alice Springs.  The history of railway development in Australia might be described as a patchwork of different shapes, sizes, lengths and ownership, and this route is also home to the “The Ghan Express”, or more commonly “The Ghan”, which has an equally chequered history.

The line was built in various stages between 1879 and 1929 – by which date it had reached Alice Springs – was opened between Port Augusta and Alice Springs as the Central Australian Railway and built to the narrow gauge of 3ft 6ins – thus adding to the country’s complement of rail gauges.  In fact, even before the full route had been opened, the Central had been taken over as a section of the Commonwealth Railways, which was already operating the standard gauge route from Port Augusta to Kalgoorlie.

The story of the line from South to North in Australia is fascinating one, and the line where ‘The Ghan’ operated – and indeed operates to this day as a private company is even more interesting.  But, as I’m sure many of us will remember from school geography, the continent of Australia is very dry, and posed many problems for steam train operations – especially on this route – so it was something of a blessing when diesel traction arrived.

In this example, which is one of international co-operation, no less than three separate companies were involved in the design and construction of 13 diesel locomotives for freight and mixed traffic duties.  The power units were supplied from Barrow-in-Furness, on the south-western extremity of the English Lake District, from Vickers Armstrong’s engineering works, and electrical equipment from AEI in the midlands, with the whole package put together by Tulloch in Australia.

General Design & Ordering

The basic design of these locomotives was a joint effort between Sulzer in the UK and SLM in Switzerland, with the overall operational needs laid down by Australia’s Commonwealth Railways to run on the 3ft 6ins gauge line from Port Augusta to Alice Springs.  The locos needed to operate in a harsh environment, with a hot dry climate and temperatures that exceeded 100 deg F for days on end, and frequent sand and dust storms.  On top of this they needed to run on lightweight track – 60lbs/yard – with demanding curves in places.


The effect of the weight of the locomotive and train speeds demanded particular consideration with the bogie design to minimise rail stress, and the effect of bogie movement and axle loads.  Compared with the ‘Zambesi’ design delivered around the same time, the NT Class was some 12tons lighter.

The order for three locomotives was placed in 1964, and many aspects of the design, including the power unit were based on an design that Sulzer-AEI had already supplied to Africa for the Nyasaland and Trans-Zambesia Railway in 1962/3.  In March 1964, Nigeria placed an order for 29 of the same ‘Zambesi’ design, again using the same Sulzer 6LDA power unit, which was the heart of the NT Class design ordered from Sulzer in the same year.

Leading Dimensions

Structural Details

The bodies of these locomotives had a very different design and construction than many of the more conventional designs of the day – as a rectangular full width box, the bodysides were created as stressed skin forms, or semi-monocoque.  Fabrication of the assembly used rolled steel sections, covered with sheet steel panels, and to provide the rigidity against deformation, a series of closely spaced vertical pillars and horizontal rails was used.


This provided a fully integral structure, with the bodysides connected by headstocks, bolsters, crossbars, deck plates, and bulkheads separating the cab at one end from the radiator compartment and engine room.  The coupler height was a particular issue with the NT Class and to handle buffing loads of up to 150 tons, a triangular fabrication was installed at each end behind the drawgear.

Immediately behind the cab was a full width 3ins thick bulkhead, heavily insulated, and the door into the engine room was double glazed, to provide protection for the crew from excess noise and heat. The radiators were positioned on either side, with part bulkheads to provide extra stiffness in the body, and similar, part bulkheads were provided at the other end of the engine room, separating the control equipment from the engine and generator.  Beyond these bulkheads was the ‘free’ end of the engine.

In its final form, the cab was placed at the No.2 end of the loco, although there had been some consideration of the design having a cab at each end.  The reason given for the cab at the No.2 end was again to do with the nature of the track it would run on, and having the cab at the No.2 end would make for better weight distribution.  Another interesting departure from the original design in the NT class was that after the first order was delivered, the following two orders and 10 locomotives were built with a body some nine inches wider.

Power Unit

The engine, an uprated version of the 960hp 6LDA28 series fitted into Class NSU locos, was exhaust pressure charged and intercooled, delivering 1,400hp, and running at 800 rpm.  At the time of their construction 4-stroke medium speed engines were commonly used in the UK and many countries, and the Sulzer engines were all built in the Engineering Works of Vickers-Armstrongs in Barrow-in-Furness.  By the time these engines were built in Barrow, the works had already constructed around 1,000 of 6, 8 and 12 cylinder types for British Railways, and of course many for other countries, including the ‘Zambesi’ design for Africa.

For the NT Class though, fitting the engine and generator assembly in the body of the loco really drove the design, since to meet the height requirement specified by the design it was necessary to mount the engine below the deck plating.  This meant that a conventional underframe could not be used, and the loco’s bodysides would be the main load bearing elements, taking both traction forces and equipment loading through cross stretchers.  Hence the stressed skin technique.

The engine itself required major changes to the workplace at the Vickers site in Barrow, and a large proportion of the engineering output there was focussed on building diesel engines, including marine types, along with cement plant, boilers, armaments and equipment for nuclear submarines.  In fact Vickers, Barrow first Sulzer engine order was received in 1947, but in 1955 orders began to be received in large numbers from British Railways, which led to the company creating a separate Traction Division to manage the design, build, testing and inspection of the Sulzer engines.  According to a commemorative brochure to mark the 1,000th engine:

“The manufacture of Sulzer engines can generally be undertaken on general purpose machine tools but specialised techniques have been developed to assist the large scale productions and inspection of these engines. Extensive use is made of jigs and tools to ensure the interchangeability of all finished parts.”

In the 1960s, Vickers, Barrow was a very busy works, and by the time the Australian order for 6LDA Sulzer diesels arrived, they had already built 1,000 of the Sulzer LDA design.  The power unit was used in the earlier A1A-A1A locos built for Commonwealth Railways over a decade earlier. 

Cross section of Sulzer 6LDA24 engine
Photo: RPB Collection

As a 4-stroke design, Sulzer engines were already easy on fuel, but for the Australian order, the ‘Zambesi’ variant provided lower fuel consumption, and showed good consumption over the full working range.  The cylinder block was described as being “… of the wet liner type …” with a single camshaft on the outside operating the valve gear and fuel injection pumps. Fibre glass inspection panels and a full length steel cover on each side of the engine provided access to fuel pumps and crankcase.  The latter was built from a number of transverse cast steel members welded to mild steel fabricated longitudinal elements.

The engine was completed by being mounted on side girders, fabricated in a box section, and extended at one end to provide a mounting for the generator.  The design and manufacture of the engine provided a significant contribution to reducing the overall weight, and the subsequent impact loading on the lightweight rail used on the narrow gauge networks.   In addition, by comparison with the NSU Class, the new locomotive’s power unit provided some 50% more power, and had been tested to achieve a 1,540hp over 1 hour on test at the Test House in Barrow.

The electrical equipment – generator and 6 traction motors were supplied by AEI.  The generator, an AEI TG 5302W was mounted at the far end of the loco from the cab and connected to the engine with a solid coupling.  The generator armature shaft connected to an auxiliary drive gearbox mounted on the main generator’s end frame of the main generator in a clover leaf format and provided three separate auxiliary drives.  One of these was located vertically above the main generator shaft, the other two below to the left and right respectively.  The auxiliary generator provided power for lighting, control systems and battery charging.

Immediately behind the cab/engine room bulkhead the cooling radiators were sited on either side of the loco, together with the combined fuel, lubricating oil and water pump set.  For cooling the engine only one circuit was used for cooling the engine, lubricating oil and charging air. The advantage claimed by the builders for this simple system was that under all conditions of load the temperature of the engine water, lubricating oil and charging air would be kept at the correct value.  This equipment was supplied by Serck and claimed to provide ample margin for operation under the extreme climate conditions of the line. 

With so few partitions and bulkheads, ventilation of the engine room was an important aspect of keeping operating and maintenance costs low, as well as combating the harsh environment.  The outside air was drawn from the top of the roof at the rear end of the locomotive through an axial flow fan and passed through filters into the engine compartment, effectively providing a positive pressure environment, to exclude fine dust and sand.  Additional air flow was provided via the traction motor blowers.

Running Gear and Transmission

Below decks so to speak, the locomotive body and power unit was carried on a pair of 3 axle bogies.  The bogie proper was a mixture of cast and fabricated components in a design intended to provide a good ride quality, with the metal-to-metal contact elements replaced by in rubber, and other non-metallic materials.   The basic assembly followed the same pattern as the ‘Zambesi’ class for Africa, where rolled mild steel sections and plates were welded into sub-assemblies to form a box-section frame.

Primary springing used helical coil springs between the equalising beams and the bogie frame, with four sandwich rubber units widely spaced providing secondary springing, and hydraulic dampers fitted at each primary spring location.  The secondary springing also reduced the weight transfer during periods when the loco was working hard or exerting higher tractive effort.

A view from the cab of NT76 in December 2019 at Quorn on the Pichi Richi Railway heritage line.         Photo: © Chris Carpenter

The bogies of course carried the clasp type brake gear, and this was operated by Australian Westinghouse air-brake system, and followed standard Commonwealth Railways practices.  Another weight saving aspect of the design was the aluminium fuel tank, which was “U” shaped in order to allow space to fit the inter-bogie control mechanism.  This latter’s purpose was designed to reduce the wear on tyre flanges when running through tight curves, by ensuring the wheels were at the best angle to the rail.  This assembly consisted of a pair of yoke arms, running on rollers supported by a body mounted bracket, with the yoke arms on each bogie were connected by a coupling.  The braking system on the new NT Class was pretty standard for the 1960s, with clasp type tread brakes and rigging, operated by Australian Westinghouse supplied air-brakes.

Each bogie carried three AEI Type 253AZ 149hp traction motors driving each axle, in the conventional nose suspended, axle hung arrangement.  Again, these were the same as fitted to the ‘Zambesi’ design – 4-pole, series wound, and with 3 pairs permanent connected in series, with three stages of field weakening.  The final drive to the wheels was achieved using a pinion on the motor shaft driving the axle mounted solid spur gear wheel with a ratio of 92/19, and the whole assembly was enclosed in a sheet steel casing.

Overall control is electro-pneumatic, with the relays/switches located in the control cubicle at the ‘B’ end of the locomotive providing the operation of the different stages of traction motor field weakening.  The cubicle was effectively sealed from the rest of the engine/generator compartment and supplied with air taken from the traction motor blowers, at a slightly higher pressure. 

In the cab of an NT – the AEI ‘standard’ pedestal controller, air-brake and various gauges seen in this view.           Photo: © Chris Carpenter

The output from the engine to the main generator used a hydraulic load regulator, linked to the engine governor, and an 18 notch master controller, mounted in a pedestal style in the cab regulated the engine speed and power.  The train crew were provided with a range of visual and audible alarms for earth faults, wheel slip, high water temperature and low oil pressures, amongst other alarms.

The NT Class were equipped to operate in multiple, and up to three locos could be coupled together and driven from one cab, whilst it was also possible to operate in multiple with the earlier NSU Class A1A-A1A design.  It was claimed at the time of their introduction that, at 1400hp, they were the most powerful diesel locos for their weight anywhere in the world.


Numbering & Operations


NT Class No. 73, together with the predecessor design, the NSU, No. 59 – also Sulzer powered – photographed here at Maree, north of The Flinders Range on 30th September 1980.  Maree was the end point of the standard gauge line, completed in 1957.  Eight years after this photo was taken, NT73 was scrapped at Port Lincoln.       Photo Courtesy: Jeremy Browne / Pichi Richie Railway

The first order for the three new NT Class locos was driven by increased passenger and freight traffic, and as a result Commonwealth Railways placed its order for a locomotive type with Tulloch Ltd of Rhodes, Sydney.  The design needed to be innovative because of the quite badly laid 3ft 6ins gauge tracks of the Central Australia Railway.  The first three were set to work on the section of line between Maree and Alice Springs.   

Overall, at first glance, the orders for the NT Class appear quite haphazard – the first 3 in 1964, then an order for 3 more in 1966, and a final order for 7 in 1968, bringing the total to 13.  The second order was placed to meet an expected increase in iron ore traffic from the Frances Creek mine on the Northern Australia Railway, and as the tonnage taken out of the Frances Creek mine continued to increase the third order was placed.

The first of the new 1400hp diesels was delivered to the Central Railway for service on the demanding route through the Flinders Range mountains between Port Augusta, Maree, Oodnadatta and Alice Springs.  When NT65 was delivered in April 1965, it was decided to name the first of the class after the then Transport Minister- Gordon Freeth – and it remained the only named example of diesels on this route.

NT65 to NT67 were delivered from the Tulloch Works on standard gauge transfer bogies to Broken Hill, where the 3ft 6ins gauge bogies were fitted, and working initially from Quorn, through the Pichi Richie Pass to Port Augusta.  In addition to passenger traffic, the coalfields to the northwest of the Flinders Range provide significant freight traffic, and where before a pair of the older NSU diesels would be used, the same working would need only a single NT.

The same process was followed for delivery of the remaining locomotives between 1966 and 1968, and, given that the standard gauge route to Alice Springs was by then in operation, the NTs destined for the Northern Railway were shipped overland from Alice.  This involved removing the NTs bogies, and carrying the three new locos on low loaders across country along the Stuart Highway.

The second order for three more NT class locos were sent to the Northern Railway, which were joined by another five from the third order.  The remaining two NTs were retained for duties on the Central Railway.  The final seven were all intended for the Northern, as the output of iron ore continued to grow rapidly, and which led to the transfer of one of the  class on the Central – NT67 – as a temporary measure. 

In 1971 the Central was again seeing some new motive power – the Clyde built NJ Class locos, which allowed for the remaining NTs to be sent to the Northern, where they saw out their final years.

The Northern Railway was just over 300 miles long from Darwin to Birdum, but no connection to Alice Springs.  In the south, services operated over the Central Railway consisted of passenger and freight, running from Port Augusta to Maree, on to Oodnadaata and finally Alice Springs, a distance of over 770 miles.  

Iron ore from the Frances Creek was at the heart of a very serious accident, with no fewer than four NT Class engines involved on 4th November 1972, and which led to the loss of three complete locomotives, and damage to the fourth.

The Darwin Accident

This was the Northern Territory’s worst rail accident and involved four NT Class locos, and this recorded quote provides an interesting description:

“Just after 5am on a November morning in 1972, a train fully loaded with iron ore crashed into a stationary train at Darwin’s Frances Bay rail yards. One railway official said, “I never saw anything like it. I ran down there expecting to be pulling bodies out of the wreckage.” But incredibly, there were no casualties, even among the crew of the runaway train, who had realised it was out of control and jumped out in time. However the accident destroyed over $1 million worth track and rolling stock.”

Source: https://www.caddiebrain.com/post/rail-accident

The locos involved were NT68, 70, 71 and 75.  NT70, 71 and 75 were written off after the accident, and although NT68 survived, it survived only another 6 years in service, and was scrapped in 1978.

In 1911 the Northern and Central Railways were owned by the Commonwealth Railways, and operated as Commonwealth Railways since 1926, and 50 years later – a decade after NT65’s arrival – four were operating on the Central and the remaining nine on the Northern, all subsequently became assets of Australian National.

This was the scene in the aftermath of the runaway train at Darwin on 4th November 1972 – three of the Class NTs were written off straight away, and a fourth having sustained ‘minor damage’ just a few years later.  Thankfully and amazingly nobody was injured in what was the Northern Australia Railways’ worst accident.  Photo: Library & Archives NT https://creativecommons.org/licenses/by/4.0/

For the NT Class locos it could be argued, their time was almost up before they were put to work, since with the closure of Central Railway in sections from 1957 to 1972, the majority of ‘narrow gauge’ workings took place in the Northern Territory.   All of the NT Class were transferred north in the 1970s, but not for more than a few years, until 1976.

By 1976 the Northern Railway was closed, leaving NT’s redundant, and with the closure of the vestiges of the 3ft 6ins route from Alice Springs to Maree in 1981, there was nowhere for them to go.  Except, there were still trains to haul on the Eyre Peninsula Railway, in what became South Australia’s Port Lincoln Division.  The remaining NT’s were joined there by the six newer NJ Class that were delivered to the Central Australia line from 1971.

Preservation

The preserved NT Class No. NT76 on the Pichie Richie Railway, still fully operational and in excellent condition – not bad for a 53 years old loco!     
 Photo Courtesy: Jeremy Browne / Pichi Richi Railway

One of the NT Class locomotives has been rescued and preserved on the Pichi Richi Railway.  NT76 was officially withdrawn in 1989, and is now operational on this heritage railway, along with an older sibling from the NSU Class.  The Pichi Richi Railway has its headquarters at Quorn and operates through the Pichi Richi pass in the Flinders Range down to Port Augusta.

So we know of at least one Barrow-in-Furness built Sulzer diesel engine that is still operational – some 12,000 miles away – and approaching its 60th birthday on the picturesque and dramatic line that was home to the original “Ghan Express”.

Useful & Essential Links

Acknowledgement

I am indebted to the Pichi Richi Railway, Jeremy Browne, Julian Sharp and Chris Carpenter for additional information, and some excellent images whilst researching this small offering on what you could say was a tenuous connection between Barrow-in-Furness and Alice Springs.  The vastness of the Australian interior, and the amazing work of the people who designed, built and completed the railway across the continent was matched by the diesel engines, train crew and everyone involved in operating a railway in such a hostile environment.  Thankyou.

1980s British Motive Power Exports

Standard

The 1980s saw some notable achievements by the U.K. rail industry, in particular, the decision to introduce two more new classes of electric locomotive, with the most advanced technology, on British Rail’s west and east coast main lines. On board microcomputers were introduced in ever increasing numbers, in the control systems of new multiple units like the class 318 and 319, and the class 87/2 (later Class 90) and 91 ‘Electra’ locomotives. With the announcement of’ the go-ahead for the Channel Tunnel, a consortium of U.K. manufacturers, including Brush, GEC Traction., Metro-Cammell and BREL, were quick to announce plans for motive power for the through trains, planned for operation between Britain and the rest of Europe.  These latter saw the beginning of the end of the d.c. motor as the standard form of power transmission to a locomotive’s wheels, extending further the use of power electronics into rail traction service, with a.c. motor drives.

Whilst the major companies like Brush and GEC Traction regularly supplied British Railways with locomotives and power equipment, with the latter winning the major contracts for1986, the U.K. industry was equally successful overseas. In the main, a substantial number of orders involved rapid transit rolling stock, taking in other household names in the British railway industry, like BREL, and Metro-Cammell, although exports of locomotives and power equipments did not lag far behind.

The major successes in that decade for the export market again involved GEC Traction and Brush, with the latter handing over the first of 22 new locomotives in 1986, for the North Island electrification project in New Zealand.  GEC’s most important export contract at that time was worth some £35 million, for 50 class 10E1 electric locomotives for South African Railways.  On the whole, the 1980s continued to witness export success for British companies, in many fields, against some very stiff competition.

Electric Traction

In 1984, Brush Electrical Machines received an order for 22, 3000kW Bo-Bo-Bo locomotives, as part of a £30 million contract placed with Hawker Siddeley Rail Projects by New Zealand Railways Corporation.  First deliveries were originally scheduled for December 1985, but the official handover of the first of the new locomotives did not take place until April 1986.

The artist’s impression of the New Zealand locos seen on the publicity brochure is a striking image.

New Zealand’s latest motive power is finished in a striking red livery, with yellow ends, black underframe, bogies and roof, and operated on the 3ft 6ins (1067 mm) gauge of the North Island’s electrified main lines.  Taking power from the 25kV a.c.,50Hz overhead contact system, these 22 locomotives from Brush incorporated some of the latest thinking in rail traction technology.  The monocoque body, with a driving cab at either end, housed the main transformer, traction converters, and all auxiliary equipment.  The overall design of the locomotives was prepared in accordance with specifications provided by New Zealand Railways Corporation, with their principal workings planned tor the Palmerston North to Hamilton sections of the North Island main line.

The solitary, single-arm, air-operated pantograph mounted in a shallow roof well collected power from the overhead catenary, feeding the main transformer through a roof mounted vacuum circuit breaker.  The transformer itself was oil cooled, and mounted in the centre of the loco., with outputs from the secondary windings feeding the two thyristor, traction converters.  From these, d.c. supplied the six, axle mounted, 500kW traction motors.  The power control electronics, in addition to providing stepless control of tractive effort, also allows for regenerative braking, with the traction motors acting as generators, and returning power back into the overhead line.

The traction motors have separately excited field coils (sep-ex), with force ventilation., and represented the then current thinking in d.c. traction motor technology; their continuous rating of 500kW was reached at a speed of 910 rpm.  Sep-ex motors enabled better use to be made of a traction unit’s available adhesion properties, along with more precise control of wheelslip, through the preferred arrangement of power control circuits.

Outline diagram of New Zealand Railways Class 30 built by Brush Traction in the late 1980s

Each of the three bogies in the N.Z. locos had a wheelbase of 2500mm (8ft 2ins approx., if you prefer) at bogie pivot centres of 5850 mm (19ft 2ins), with main and secondary suspension provided by coil springs.  The bogies sported traditional air-operated clasp type brakes, in addition to regenerative braking, with the shoes bearing directly on the wheel treads.

Basic dimensions and data are as follows;

Brush Bo-Bo-Bo locomotives for New Zealand

GEC Traction’s connection with South African Railways goes back many years, including numerous orders in a fleet of electric locomotives that constitute the largest single type in the world.  In 1985 the company won an order for 50 claas10E1(series 2) 3kVd.c. electric locomotives, worth some £35 million.  At that time, the S.A.R. class 10E1’s were the most advanced d.c. traction units in the world, incorporating state of the art technology.  The order was placed with GEC Transportation Projects of the U.K., with mechanical parts supplied by Union Carriage & Wagon Co., of South Africa.

Weighing in at 126 tonnes, these Co-Co units included microprocessor based ‘chopper’ control, and up to six could be connected in multiple, with a continuous rating of 3,000kW each – the same as the New Zealand triple Bo locomotives built by Brush. 

Basic dimensions of the SAR locomotives are given below, and are worth comparing with the Bo-Bo-Bo units for New Zealand;

GEC/SAR Class 10E locomotives

Power equipment installed in the 10E1 locomotives was designed to cover supplies from 2kV to 4kV d.c., with each of the two single arm pantographs connected to high-speed circuit breakers.  Equipment layout in the locomotive body was based on a modular and functional grouping arrangement, where the obvious advantage is in the reduction in complexity of pipework and cable runs, and easier maintenance.  The two fixed frequency choppers are air cooled, and the three thyristor arrangement was similar to installations provided by GEC on multiple unit stock for the Dublin and Seoul (Korea) metro schemes.

Again, like the Brush locos.  for New Zealand, d.c., traction motors with separate excitation of field coils was provided, with the six motors connected in two groups of three motors in series. Individual control of the two motor groups allowed compensation of wheel wear, and reduction of the effects of weight transfer.  In a similar manner to the numerous class 6E1 locomotives, the traction motors were mounted on a ‘U’ tube suspension unit and axle hung.  Regenerative braking, and when required, rheostatic braking was included, independently controlled from the air brake system operating conventional clasp type tread brakes.  Auxiliary power supplies were 3-phase a.c., supplied from a single motor alternator set.

Classic publicity shot of GEC/Union Carriage & Wagon built Class 10E Co-Co No. 10052.
Photo: RPB Collection/GEC Traction

The microprocessors that form the heart of the sophisticated control system provided rapid detection and correction of wheelslip not automatically corrected by the sepex motors, load sharing between locomotives connected in multiple, and the weight transfer compensation. One of the features of the microprocessors was enabling the new units to operate in multiple with other types, by storing the operating characteristics of the different types, and matching the performance of the 10E1 type to suite.  As with all locomotives fitted with microprocessor control, fault monitoring, diagnosis and logging, was an important feature, and eventually a standard facility.

Designed for operation in some very arduous environmental conditions to exacting technical specifications, the first of the new SAR locomotives entered service in late 1986.

Diesel Traction

Again, both Brush and GEC Traction figured prominently in diesel traction equipment for the export market, joined by others, such as Thomas Hill and Hunslet, with specialist diesel shunting locomotives, primarily for industrial use.  Brush, who are most familiarly associated with numerous class 47 and HST, and later the class 56 units for British Rail, saw success in 1980 with a £1 million order from Japan for diesel-electric shunters.

This view is of one of the then new diesel shunting locos built for Ghana, with examples built for Turkey and Sri Lanka.
Photo Source: Railway Industry Association (RIA)

And, in the early 1980s, following completion of a new purpose-built locomotive assembly shop at Loughborough, the Company concentrated efforts on building up sales of a range of shunting and trip working locomotives.  For Turkey, Sri Lanka and Ghana, Bo-Bo type locomotives were built between 1981, 1982 and 1983, of a relatively similar basic layout, but some variations in detail design.  Also in 1983, Brush’s links with India were reinforced with an agreement covering the development and construction of shunting locomotives with Suri & Nayar of Bangalore.

The Bo-Bo locomotives which Brush were building for Sri Lanka in 1982 were a hood type, housing a 1000hp General Motors diesel engine coupled to the main alternator, with four conventional series-wound traction motors.  The general-purpose locomotives were essentially an orthodox hood type, with a major feature of the designs being the elimination/reduction of maintenance, through the provision of simple mechanical drives for all auxiliary machinery. 

Photo Source: Railway Industry Association (RIA)
Another example of Brush Traction’s directional change in the 1980s – at least for export – was a focus on what might be described as shunting, mixed traffic or trip freight workings. The two images above illustrate the 1,000hp locos supplied to Sri Lanka in the early 80s.
Photo Source: Railway Industry Association (RIA)

Whether the locomotives were intended for Sri Lanka, Ghana, or in the later examples delivered to Gabon, the body was divided into three groups, carried on a conventional steel underframe. At the rear, a. short hood housed the batteries, followed by the cab, and a long hood over the power equipment, which itself was divided into three compartments. The compartment nearest the cab housing the electrical equipment, including the rectifiers, the next in line included the engine and generator/alternator assembly. Both of these compartments had a filtered air supply, whilst the third, at the front of the loco., housing the cooling group, radiator fan drives, etc., had no such luxury. The two two-axle bogies beneath the locomotive carried the d.c., series wound traction motors, hung from the axles, and with a spur gear final drive, in a fabricated steel frame, and main suspension of coil springs and hydraulic dampers. The fuel tank, as convention dictated was carried between the bogies.

The six metre gauge locomotives ordered for Ghana in 1983, had a 645 hp Rolls Royce engine, paired with the Brush generator, of the same basic design, but weighing 54 tonnes. The hood shape was slightly different too, being lower, and the cab roof had a much flatter profile. Turned out in a colourful red and gold livery, these six locomotives were worth some £2.5 million, and intended for trip freight working on the main lines.

This image has an empty alt attribute; its file name is brush-diesel-for-gabon.png
Another Brush Electrical Machines success were the 1,100 hp Bo-Bo design, powered by a Cummins diesel engine – which was a departure for the company at the time. The locos were supplied to Gabon State Railways (OCTRA) and helped to grow and develop the country’s rail network.
Photo: RPB Collection/Brush Traction

Amongst the last major orders for diesel locomotives for main line service beyond the U.K., and for Brush, were 1100hp Bo-Bo’s for Gabon Railways (0CTRA) , constructed in 1985. These 90 tonne units were powered by Cummins diesel engines, coupled to a Brush alternator, for mixed traffic duties on the standard gauge. The three-phase output from the alternator was rectified to feed the four axle hung, nose suspended d.c. traction motors. Mechanically, the layout of the locomotives for Gabon was the same as previous orders .

GEC Traction’s involvement in new locomotive construction for overseas railways was largely limited to power equipment, or as subcontractors to others. Later examples of this in the 1980s was an order for 45 sets of electric transmission equipment for Krauss-Maffei built diesels for Turkey, with a Bo-Bo wheel arrangement a continuous rating of 940hp and weighing in at 68 tonnes.  Another 5 locomotives for TCDD were to be supplied with 3-phase drives provided by Brown Boveri. The majority of locomotives were to be built, or rather put together in Turkey, as they were shipped out in completely knocked down. Most of these latter – 30 in all – had been shipped by mid-1986, although local assembly had not started until later that year and into 1987.  Initially, after official handover, the Krauss-Maffei/GEC Traction locomotives were set to work on the Istanbul to Kapikule (On the Bulgarian border) line, and operated between Ismir and Ankara.

A set of 5 of the GEC Traction equipped diesel freight types for Turkey in 1983. Most of these were supplied as a kit of parts for assembly from Krauss Maffei (main contractor) and GEC as subcontractor for the electrical equipment. Photo: RPB Collection/GEC Traction

Refurbishing the electrical equipment of English Electric built diesel locomotives for East Africa and the Sudan and supplying engine spares also occupied the expertise of GEC Traction. The class 87 of Kenya railways is the equivalent of British Rail’s class 37, and extending its working life was a priority for its owners.

The Sudan became another overseas market for U.K. motive power when, in 1982, the Hunslet Engine Co., received an order for 11 0-8-0 locomotives for a 600mm rail line hauling cotton and cotton seeds from plantations to processing factories. Hunslet had been supplying locos. to the Sudan Gezira Board – the operators of this line – for almost 30 years, and the repeat order took the total supplied to the Sudan by Hunslet to 67 locomotives.

In the 1980s, the U.K. rail industry has undoubtedly been particularly successful in supplying main line electric locomotives, the winning of these contracts influenced by the wealth of experience and expertise of the contractors. Provision of power equipment, including alternators, generators, traction motors and control equipment also saw many more successes for the railway industry during this period, from Australia’s XPT to AMAX mine locomotives for the USA.

Multiple unit rolling stock for suburban and rapid transit systema around the world was another area where U.K. builders, again particularly GEC Traction and Brush, gained many valuable orders. A number of’ these contracts were secured in the far east, in locations like Singapore, Hong Kong, and Australia, where competition from the Japanese is especially fierce. Motive power orders though were predominantly concentrated in the field of electric traction, and the design and construction of locomotives for South Africa and New Zealand, were by some margin the stars of the 1980s.

GEC Traction supplied these AMAX mining locomotives to the USA, in what might be described as the UK’s last successful decade of the 20th century for exports by the railway industry. RPB Collection/GEC Traction

-oOo-

Wellington to Paekakariki

Standard

The Wellington Suburban Electrification

Well, not strictly suburban, but the second major electrification on New Zealand’s railway lines that involved English Electric; this time on the main line linking the capital, Wellington, with Auckland, 400 miles away to the north. This was the first stage in electrifying the North Island Main Trunk (NIMT), across some of the world’s most spectacular, and challenging terrain.

ED102 nlnzimage copy

This is an image of the first of the class built in New Zealand – No. 102 is seen here in 1938 ex-works, without the skirt applied to the very first of the class, built in Preston.                               Photo Courtesy: Ref: APG-0320-1/2-G. Alexander Turnbull Library, Wellington, New Zealand. /records/22545501

 

English Electric were pioneers of electric traction, and were especially successful around the world, notably of course in former British colonies, whether India, Australia, and of course, New Zealand.  In the 1930s, increasing traffic around Wellington, and the success of the Arthur’s Pass project almost a decade earlier, the North Island electrification work led to an order for tnew main line electric locomotives.  These were the first heavyweight (my italics) locos in service on the route from Wellington to Paekakariki, which later became the North Island Main Trunk (NIMT).

At the same time, the fortmer Dick, Kerr Works of English Electric received an order for multiple units to provide faster, more efficient suburban passenger services.

EE Railcar nlnzimage copy 2

One of the “DM” series of multiple units, supplied by English Electric, here seen at Khandallah Station, on the opening day of the service – 4th July 1938.                                   Photo Courtesy: Ref: APG-1483-1/4-G. Alexander Turnbull Library, Wellington, New Zealand. /records/23252719

The locomotives introduced a number of new, novel features, even by the emerging ‘new technology’ of the day, and yet oddly, their wheel arrangement was initially described as that of a steam loco – i.e. a 2-8-4 – but later a 1-Do-2.  It’s hard to know which sounds more compex.

The locos had a long life, and although only two survived to be preserved as static exhibits, they marked at least the start of electric traction progress in New Zealand.  The Preston company received further orders from ‘down under’ after the Second World War too, with a Bo-Bo-Bo design in the 1950s, as the “Ew” class, and as late as the 1980s English Electric – as GEC Traction – were still supplying electrical equipment.

Hopefully the overview of this design will whet your appetite further.

Please click on the image below:

Wellington Cover

 

The earlier project is described here: “Over The Southern Alps via Arthur’s Pass”

Useful Links: